Likelihood-Free Parameter Estimation with Neural Bayes Estimators

Matthew Sainsbury-Dale, A. Zammit‐Mangion, Raphael Huser
{"title":"Likelihood-Free Parameter Estimation with Neural Bayes Estimators","authors":"Matthew Sainsbury-Dale, A. Zammit‐Mangion, Raphael Huser","doi":"10.1080/00031305.2023.2249522","DOIUrl":null,"url":null,"abstract":"Neural point estimators are neural networks that map data to parameter point estimates. They are fast, likelihood free and, due to their amortised nature, amenable to fast bootstrap-based uncertainty quantification. In this paper, we aim to increase the awareness of statisticians to this relatively new inferential tool, and to facilitate its adoption by providing user-friendly open-source software. We also give attention to the ubiquitous problem of making inference from replicated data, which we address in the neural setting using permutation-invariant neural networks. Through extensive simulation studies we show that these neural point estimators can quickly and optimally (in a Bayes sense) estimate parameters in weakly-identified and highly-parameterised models with relative ease. We demonstrate their applicability through an analysis of extreme sea-surface temperature in the Red Sea where, after training, we obtain parameter estimates and bootstrap-based confidence intervals from hundreds of spatial fields in a fraction of a second.","PeriodicalId":342642,"journal":{"name":"The American Statistician","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American Statistician","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00031305.2023.2249522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Neural point estimators are neural networks that map data to parameter point estimates. They are fast, likelihood free and, due to their amortised nature, amenable to fast bootstrap-based uncertainty quantification. In this paper, we aim to increase the awareness of statisticians to this relatively new inferential tool, and to facilitate its adoption by providing user-friendly open-source software. We also give attention to the ubiquitous problem of making inference from replicated data, which we address in the neural setting using permutation-invariant neural networks. Through extensive simulation studies we show that these neural point estimators can quickly and optimally (in a Bayes sense) estimate parameters in weakly-identified and highly-parameterised models with relative ease. We demonstrate their applicability through an analysis of extreme sea-surface temperature in the Red Sea where, after training, we obtain parameter estimates and bootstrap-based confidence intervals from hundreds of spatial fields in a fraction of a second.
基于神经贝叶斯估计的无似然参数估计
神经点估计器是将数据映射到参数点估计的神经网络。它们是快速的、无似然的,并且由于它们的平摊性质,适于快速的基于自引导的不确定性量化。在本文中,我们的目标是提高统计学家对这个相对较新的推理工具的认识,并通过提供用户友好的开源软件来促进其采用。我们还关注了从复制数据中进行推理的普遍问题,我们使用置换不变神经网络在神经设置中解决了这个问题。通过广泛的仿真研究,我们表明这些神经点估计器可以相对容易地快速和最优地(在贝叶斯意义上)估计弱识别和高参数化模型中的参数。我们通过对红海极端海面温度的分析证明了它们的适用性,在那里,经过训练,我们在几分之一秒内从数百个空间场获得参数估计和基于bootstrap的置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信