State space least mean fourth algorithm

Arif Ahmed, M. Moinuddin, U. M. Al-Saggaf
{"title":"State space least mean fourth algorithm","authors":"Arif Ahmed, M. Moinuddin, U. M. Al-Saggaf","doi":"10.1109/ICECE.2014.7026844","DOIUrl":null,"url":null,"abstract":"Adaptive filters generally employed for estimation purposes require high computational power when it comes to real time estimation. Therefore, in this paper we propose a computationally light yet effective estimation algorithm based on state space model. Our algorithm has been employed successfully in linear and non linear state space model based estimation problems.We investigate few examples to demonstrate the novelty of our algorithm by comparison with few existing algorithms in presence of non Gaussian noise namely uniform noise. More specifically, the state space normalized least mean squares and the Kalman filter has been compared with our algorithm.","PeriodicalId":335492,"journal":{"name":"8th International Conference on Electrical and Computer Engineering","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE.2014.7026844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Adaptive filters generally employed for estimation purposes require high computational power when it comes to real time estimation. Therefore, in this paper we propose a computationally light yet effective estimation algorithm based on state space model. Our algorithm has been employed successfully in linear and non linear state space model based estimation problems.We investigate few examples to demonstrate the novelty of our algorithm by comparison with few existing algorithms in presence of non Gaussian noise namely uniform noise. More specifically, the state space normalized least mean squares and the Kalman filter has been compared with our algorithm.
状态空间最小平均第四算法
通常用于估计目的的自适应滤波器在进行实时估计时需要很高的计算能力。因此,本文提出了一种基于状态空间模型的计算量小而有效的估计算法。该算法已成功应用于基于线性和非线性状态空间模型的估计问题。我们研究了几个例子,通过与现有的几种存在非高斯噪声即均匀噪声的算法进行比较,来证明我们的算法的新颖性。具体来说,将状态空间归一化最小均二乘法和卡尔曼滤波与我们的算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信