New gradient features for off-line handwritten signature verification

Yasmine Serdouk, H. Nemmour, Y. Chibani
{"title":"New gradient features for off-line handwritten signature verification","authors":"Yasmine Serdouk, H. Nemmour, Y. Chibani","doi":"10.1109/INISTA.2015.7276751","DOIUrl":null,"url":null,"abstract":"This work focuses on automatic off-line handwritten signature verification where a new gradient feature is proposed for signature characterization. This feature namely, Gradient Local Binary Patterns (GLBP) takes advantage from textural information, to improve the gradient description within images. The verification step is performed in a writer-dependent framework using SVM classifier. Experimental analysis is conducted on CEDAR and GPDS-300 datasets. The results obtained in terms of average error rate highlight the high performance of the proposed feature, which significantly overcomes several state of the art results.","PeriodicalId":136707,"journal":{"name":"2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2015.7276751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This work focuses on automatic off-line handwritten signature verification where a new gradient feature is proposed for signature characterization. This feature namely, Gradient Local Binary Patterns (GLBP) takes advantage from textural information, to improve the gradient description within images. The verification step is performed in a writer-dependent framework using SVM classifier. Experimental analysis is conducted on CEDAR and GPDS-300 datasets. The results obtained in terms of average error rate highlight the high performance of the proposed feature, which significantly overcomes several state of the art results.
新的梯度功能离线手写签名验证
本文主要研究离线手写签名的自动验证,提出了一种新的梯度特征用于签名表征。这种特征即梯度局部二值模式(GLBP)利用纹理信息来改进图像内的梯度描述。验证步骤是在一个依赖于作者的框架中使用SVM分类器执行的。在CEDAR和GPDS-300数据集上进行了实验分析。在平均错误率方面获得的结果突出了所提出的特征的高性能,它显著地克服了一些最新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信