Polygonization of remote sensing classification maps by mesh approximation

Emmanuel Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez
{"title":"Polygonization of remote sensing classification maps by mesh approximation","authors":"Emmanuel Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez","doi":"10.1109/ICIP.2017.8296343","DOIUrl":null,"url":null,"abstract":"The ultimate goal of land mapping from remote sensing image classification is to produce polygonal representations of Earth's objects, to be included in geographic information systems. This is most commonly performed by running a pixelwise image classifier and then polygonizing the connected components in the classification map. We here propose a novel polygonization algorithm, which uses a labeled triangular mesh to approximate the input classification maps. The mesh is optimized in terms of an l1 norm with respect to the classifiers's output. We use a rich set of optimization operators, which includes a vertex relocator, and add a topology preservation strategy. The method outperforms current approaches, yielding better accuracy with fewer vertices.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The ultimate goal of land mapping from remote sensing image classification is to produce polygonal representations of Earth's objects, to be included in geographic information systems. This is most commonly performed by running a pixelwise image classifier and then polygonizing the connected components in the classification map. We here propose a novel polygonization algorithm, which uses a labeled triangular mesh to approximate the input classification maps. The mesh is optimized in terms of an l1 norm with respect to the classifiers's output. We use a rich set of optimization operators, which includes a vertex relocator, and add a topology preservation strategy. The method outperforms current approaches, yielding better accuracy with fewer vertices.
基于网格逼近的遥感分类图多边形化
从遥感图像分类中绘制陆地地图的最终目标是产生地球物体的多边形表示,以便纳入地理信息系统。这通常是通过运行像素级图像分类器,然后对分类图中连接的组件进行多边形化来实现的。本文提出了一种新的多边形化算法,该算法使用标记三角形网格来近似输入分类图。根据分类器输出的l1范数对网格进行优化。我们使用了一组丰富的优化算子,其中包括一个顶点重定位器,并增加了一个拓扑保存策略。该方法优于目前的方法,用更少的顶点产生更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信