Crop Classification using Semi supervised Learning on Data Fusion of SAR and Optical Sensor

A. R, Gopikrishnan C, Varun Raj A, V. M, Mr. Jayakrishnan
{"title":"Crop Classification using Semi supervised Learning on Data Fusion of SAR and Optical Sensor","authors":"A. R, Gopikrishnan C, Varun Raj A, V. M, Mr. Jayakrishnan","doi":"10.47392/irjash.2023.s060","DOIUrl":null,"url":null,"abstract":"Crop maps are essential tools for creating crop inventories, forecasting yields, and guiding the use of efficient farm management techniques. These maps must be created at highly exact scales, necessitating difficult, costly, and time-consuming fieldwork. Deep learning algorithms have now significantly enhanced outcomes when using data in the geographical and temporal dimensions, which are essential for agricultural research. The simultaneous availability of Sentinel-1 (synthetic aperture radar) and Sentinel-2 (optical) data provides an excellent chance to combine them. Sentinel 1 and Sentinel 2 data sets were collected for the Cape Town, South Africa, region. With the use of these datasets, we use the fusion technique, particularly the layer-level fusion strategy, one of the three fusion procedures (input level, layer level, and deci-sion level). Also, we will compare the results before and after the fusion and discuss the recommended method for converting from a multilayer perceptron decoder to a semi-supervised decoder architecture.","PeriodicalId":244861,"journal":{"name":"International Research Journal on Advanced Science Hub","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal on Advanced Science Hub","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47392/irjash.2023.s060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Crop maps are essential tools for creating crop inventories, forecasting yields, and guiding the use of efficient farm management techniques. These maps must be created at highly exact scales, necessitating difficult, costly, and time-consuming fieldwork. Deep learning algorithms have now significantly enhanced outcomes when using data in the geographical and temporal dimensions, which are essential for agricultural research. The simultaneous availability of Sentinel-1 (synthetic aperture radar) and Sentinel-2 (optical) data provides an excellent chance to combine them. Sentinel 1 and Sentinel 2 data sets were collected for the Cape Town, South Africa, region. With the use of these datasets, we use the fusion technique, particularly the layer-level fusion strategy, one of the three fusion procedures (input level, layer level, and deci-sion level). Also, we will compare the results before and after the fusion and discuss the recommended method for converting from a multilayer perceptron decoder to a semi-supervised decoder architecture.
基于半监督学习的SAR与光学传感器数据融合作物分类
作物图是创建作物清单、预测产量和指导使用高效农场管理技术的重要工具。这些地图必须以高度精确的比例尺绘制,这就需要进行困难、昂贵和耗时的实地工作。深度学习算法现在在使用地理和时间维度的数据时显着提高了结果,这对农业研究至关重要。Sentinel-1(合成孔径雷达)和Sentinel-2(光学)数据的同时可用性为它们的结合提供了极好的机会。哨兵1号和哨兵2号数据集是为南非开普敦地区收集的。使用这些数据集,我们使用融合技术,特别是层级融合策略,三个融合过程之一(输入级,层级和决策级)。此外,我们将比较融合前后的结果,并讨论从多层感知器解码器转换为半监督解码器架构的推荐方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信