Rate-distortion function for finite block codes: analysis of symmetric binary hamming problem

Srinivas R. Avasarala, S. Jana, P. Akella
{"title":"Rate-distortion function for finite block codes: analysis of symmetric binary hamming problem","authors":"Srinivas R. Avasarala, S. Jana, P. Akella","doi":"10.1109/NCC.2015.7084928","DOIUrl":null,"url":null,"abstract":"Shannon's rate-distortion theory provides an asymptotic analysis, where delays are allowed to grow unbounded. In practice, real-time applications, such as video streaming and network storage, are subject to certain maximum delay. Accordingly, it is imperative to develop a finite-delay framework for analyzing the rate-distortion limit. In this backdrop, we propose an intuitive generalization of Shannon's asymptotic operational framework to finite block codes. In view of the extreme complexity of such framework, we obtain insight by specializing to the symmetric binary hamming problem. Even upon such specialization, the proposed framework is computationally so intensive that accurate evaluation of the finite-delay rate-distortion function is practical only upto a block length of three. In order to obtain further insight, we then propose a lower-complexity lower bound, based on the partition function of natural numbers, whose computation is practical upto a block length of six. Finally, using a simple combinatorial argument, we propose an upper bound to localize the desired rate-distortion function between our lower and upper bounds.","PeriodicalId":302718,"journal":{"name":"2015 Twenty First National Conference on Communications (NCC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Twenty First National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2015.7084928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shannon's rate-distortion theory provides an asymptotic analysis, where delays are allowed to grow unbounded. In practice, real-time applications, such as video streaming and network storage, are subject to certain maximum delay. Accordingly, it is imperative to develop a finite-delay framework for analyzing the rate-distortion limit. In this backdrop, we propose an intuitive generalization of Shannon's asymptotic operational framework to finite block codes. In view of the extreme complexity of such framework, we obtain insight by specializing to the symmetric binary hamming problem. Even upon such specialization, the proposed framework is computationally so intensive that accurate evaluation of the finite-delay rate-distortion function is practical only upto a block length of three. In order to obtain further insight, we then propose a lower-complexity lower bound, based on the partition function of natural numbers, whose computation is practical upto a block length of six. Finally, using a simple combinatorial argument, we propose an upper bound to localize the desired rate-distortion function between our lower and upper bounds.
有限分组码的率失真函数:对称二进制汉明问题的分析
香农的速率扭曲理论提供了一个渐近分析,其中允许延迟无界增长。在实际应用中,实时应用,如视频流和网络存储,都有一定的最大延迟。因此,有必要开发一个有限延迟框架来分析速率失真极限。在此背景下,我们提出了一个直观的推广香农的渐近操作框架到有限块码。鉴于这种框架的极端复杂性,我们通过专门研究对称二进制汉明问题来获得洞察力。即使在这样的专业化,所提出的框架是如此密集的计算,有限延迟率失真函数的准确评估是实用的,只有三个块的长度。为了获得进一步的见解,我们提出了一个基于自然数配分函数的低复杂度下界,其计算在块长度为6的情况下是实用的。最后,使用一个简单的组合参数,我们提出了一个上界,以在我们的下界和上界之间定位所需的率失真函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信