{"title":"New analytic results for the incomplete Toronto function and incomplete Lipschitz-Hankel Integrals","authors":"P. Sofotasios, S. Freear","doi":"10.1109/IMOC.2011.6169356","DOIUrl":null,"url":null,"abstract":"This paper provides novel analytic expressions for the incomplete Toronto function, TB(m, n, r), and the incomplete Lipschitz-Hankel Integrals of the modified Bessel function of the first kind, Ieμ, n(a, z). These expressions are expressed in closed-form and are valid for the case that m ≥ n and n being an odd multiple of 1/2, i.e. n ± 0.5 Є N Capitalizing on these, tight upper and lower bounds are subsequently proposed for both TB(m, n, r) function and Ieμ, n(a, z) integrals. Importantly, all new representations are expressed in closed-form whilst the proposed bounds are shown to be rather tight. To this effect, they can be effectively exploited in various analytical studies related to wireless communication theory. Indicative applications include, among others, the performance evaluation of digital communications over fading channels and the information-theoretic analysis of multiple-input multiple-output systems.","PeriodicalId":179351,"journal":{"name":"2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMOC.2011.6169356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper provides novel analytic expressions for the incomplete Toronto function, TB(m, n, r), and the incomplete Lipschitz-Hankel Integrals of the modified Bessel function of the first kind, Ieμ, n(a, z). These expressions are expressed in closed-form and are valid for the case that m ≥ n and n being an odd multiple of 1/2, i.e. n ± 0.5 Є N Capitalizing on these, tight upper and lower bounds are subsequently proposed for both TB(m, n, r) function and Ieμ, n(a, z) integrals. Importantly, all new representations are expressed in closed-form whilst the proposed bounds are shown to be rather tight. To this effect, they can be effectively exploited in various analytical studies related to wireless communication theory. Indicative applications include, among others, the performance evaluation of digital communications over fading channels and the information-theoretic analysis of multiple-input multiple-output systems.
本文提供了新颖的不完整的多伦多函数解析表达式,结核病(m, n, r),和不完整Lipschitz-Hankel修改第一类贝塞尔函数的积分,即μ、n (a, z)。这些表达式表达在封闭和有效的m≥n, n是一个奇怪的1/2的倍数,即n±0.5Єn利用这些,紧上界和下界都随后提出了结核病(m, n, r)功能和Ieμ,n (a, z)积分。重要的是,所有新的表示都以封闭形式表示,而建议的界限被证明是相当严格的。因此,它们可以有效地用于与无线通信理论相关的各种分析研究中。指示性应用包括衰落信道上数字通信的性能评估和多输入多输出系统的信息论分析。