DeepASD Framework: A Deep Learning-Assisted Automatic Sarcasm Detection in Facial Emotions

Jiby Mariya Jose, S. Benedict
{"title":"DeepASD Framework: A Deep Learning-Assisted Automatic Sarcasm Detection in Facial Emotions","authors":"Jiby Mariya Jose, S. Benedict","doi":"10.1109/ICCES57224.2023.10192647","DOIUrl":null,"url":null,"abstract":"The vibrant human-machine research provides space for assessing sentiments in facial emotions. Capturing apt sarcasm-related emotions, especially in online meetings or stress interviews, is a challenging aspect. The purpose of this research is to apply deep learning algorithms to effectively assess the sarcasm in human facial emotions in an automatic fashion using the proposed Deep Learning-Assisted Automatic Sarcasm Detection (DeepASD) framework. Our framework trains facial sarcasm-related emotions from internet sources and applies deep learning algorithms to perform visual sarcasm detections. The proposed framework processes algorithms on edge-enabled compute nodes, including GPU-based machines. We evaluated the DeepASD framework using various deep learning algorithms such as EfficientNet, XceptionNet, InceptionNet, ResNet, DenseNet, ConvNext, MobileNet, and their variants; and, we observed that Mobilenetv3 achieved a better learning accuracy of 96.44 percent and energy consumption of 7959 Joules using minimal trainable/non-trainable parameters while detecting sarcasm in facial emotions. Our work will be beneficial for online interviewers, business enthusiasts, or future robotic machine developers for accomplishing accurate decisions considering sarcasm in facial emotions.","PeriodicalId":442189,"journal":{"name":"2023 8th International Conference on Communication and Electronics Systems (ICCES)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Communication and Electronics Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES57224.2023.10192647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The vibrant human-machine research provides space for assessing sentiments in facial emotions. Capturing apt sarcasm-related emotions, especially in online meetings or stress interviews, is a challenging aspect. The purpose of this research is to apply deep learning algorithms to effectively assess the sarcasm in human facial emotions in an automatic fashion using the proposed Deep Learning-Assisted Automatic Sarcasm Detection (DeepASD) framework. Our framework trains facial sarcasm-related emotions from internet sources and applies deep learning algorithms to perform visual sarcasm detections. The proposed framework processes algorithms on edge-enabled compute nodes, including GPU-based machines. We evaluated the DeepASD framework using various deep learning algorithms such as EfficientNet, XceptionNet, InceptionNet, ResNet, DenseNet, ConvNext, MobileNet, and their variants; and, we observed that Mobilenetv3 achieved a better learning accuracy of 96.44 percent and energy consumption of 7959 Joules using minimal trainable/non-trainable parameters while detecting sarcasm in facial emotions. Our work will be beneficial for online interviewers, business enthusiasts, or future robotic machine developers for accomplishing accurate decisions considering sarcasm in facial emotions.
DeepASD框架:深度学习辅助的面部情绪自动讽刺检测
活跃的人机研究为评估面部情绪中的情绪提供了空间。捕捉恰当的讽刺相关情绪,尤其是在在线会议或压力访谈中,是一个具有挑战性的方面。本研究的目的是应用深度学习算法,使用提出的深度学习辅助自动讽刺检测(DeepASD)框架,以自动方式有效评估人类面部情绪中的讽刺。我们的框架从互联网资源中训练与面部讽刺相关的情绪,并应用深度学习算法来执行视觉讽刺检测。提出的框架在边缘计算节点上处理算法,包括基于gpu的机器。我们使用各种深度学习算法(如EfficientNet、XceptionNet、InceptionNet、ResNet、DenseNet、ConvNext、MobileNet及其变体)对DeepASD框架进行了评估;并且,我们观察到Mobilenetv3在检测面部情绪中的讽刺时,使用最小的可训练/不可训练参数实现了96.44%的更好的学习准确率和7959焦耳的能量消耗。我们的工作将有助于在线面试官、商业爱好者或未来的机器人开发人员在考虑面部表情的讽刺时做出准确的决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信