Combining Satellite Imagery and GPS Data for Road Extraction

Tao Sun, Zonglin Di, Yin Wang
{"title":"Combining Satellite Imagery and GPS Data for Road Extraction","authors":"Tao Sun, Zonglin Di, Yin Wang","doi":"10.1145/3281548.3281550","DOIUrl":null,"url":null,"abstract":"Road extraction is a fundamental problem in remote sensing and mapping. Recent advances in Convolution Neural Network (CNN) have contributed significant improvements in automatic road extraction from satellite imagery, albeit prediction gaps challenge post-processing. Some of the gaps are hard to bridge by satellite imagery alone due to dense vegetation, road construction, and building shadows. In this paper, we combine satellite imagery with GPS data to improve road extraction quality. Our dataset includes 100cm pixel resolution satellite imagery and 192-hour taxi GPS traces from the urban area of Beijing. Experimenting with various layers to combine GPS data, our CNN model outperforms the RGB-only model by nearly 13% on mean IoU.","PeriodicalId":231184,"journal":{"name":"Proceedings of the 2nd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3281548.3281550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Road extraction is a fundamental problem in remote sensing and mapping. Recent advances in Convolution Neural Network (CNN) have contributed significant improvements in automatic road extraction from satellite imagery, albeit prediction gaps challenge post-processing. Some of the gaps are hard to bridge by satellite imagery alone due to dense vegetation, road construction, and building shadows. In this paper, we combine satellite imagery with GPS data to improve road extraction quality. Our dataset includes 100cm pixel resolution satellite imagery and 192-hour taxi GPS traces from the urban area of Beijing. Experimenting with various layers to combine GPS data, our CNN model outperforms the RGB-only model by nearly 13% on mean IoU.
结合卫星图像和GPS数据进行道路提取
道路提取是遥感制图中的一个基本问题。卷积神经网络(CNN)的最新进展为从卫星图像中自动提取道路做出了重大贡献,尽管预测差距挑战后处理。由于茂密的植被、道路建设和建筑阴影,一些缺口很难仅凭卫星图像弥合。本文将卫星图像与GPS数据相结合,提高道路提取质量。我们的数据集包括100cm像素分辨率的卫星图像和来自北京市区的192小时出租车GPS轨迹。通过实验不同的层来组合GPS数据,我们的CNN模型在平均IoU上比rgb模型高出近13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信