Performance-Portable Graph Coarsening for Efficient Multilevel Graph Analysis

Michael S. Gilbert, Seher Acer, E. Boman, Kamesh Madduri, S. Rajamanickam
{"title":"Performance-Portable Graph Coarsening for Efficient Multilevel Graph Analysis","authors":"Michael S. Gilbert, Seher Acer, E. Boman, Kamesh Madduri, S. Rajamanickam","doi":"10.1109/IPDPS49936.2021.00030","DOIUrl":null,"url":null,"abstract":"The multilevel heuristic is an effective strategy for speeding up graph analytics, and graph coarsening is an integral step of multilevel methods. We perform a comprehensive study of multilevel coarsening in this work. We primarily focus on the graphics processing unit (GPU) parallelization of the Heavy Edge Coarsening (HEC) method executed in an iterative setting. We present optimizations for the two phases of coarsening, a fine-to-coarse vertex mapping phase, and a coarse graph construction phase. We also express several other coarsening algorithms using the Kokkos framework and discuss their parallelization. We demonstrate the efficacy of parallelized HEC on an NVIDIA Turing GPU and a 32-core AMD Ryzen processor using multilevel spectral graph partitioning as the primary case study.","PeriodicalId":372234,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS49936.2021.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The multilevel heuristic is an effective strategy for speeding up graph analytics, and graph coarsening is an integral step of multilevel methods. We perform a comprehensive study of multilevel coarsening in this work. We primarily focus on the graphics processing unit (GPU) parallelization of the Heavy Edge Coarsening (HEC) method executed in an iterative setting. We present optimizations for the two phases of coarsening, a fine-to-coarse vertex mapping phase, and a coarse graph construction phase. We also express several other coarsening algorithms using the Kokkos framework and discuss their parallelization. We demonstrate the efficacy of parallelized HEC on an NVIDIA Turing GPU and a 32-core AMD Ryzen processor using multilevel spectral graph partitioning as the primary case study.
面向高效多级图分析的高性能便携式图粗化
多层启发式算法是提高图分析速度的有效策略,而图粗化是多层启发式算法的重要组成部分。在这项工作中,我们对多级粗化进行了全面的研究。我们主要关注在迭代设置中执行重边缘粗化(HEC)方法的图形处理单元(GPU)并行化。我们提出了粗化的两个阶段的优化,一个精细到粗顶点映射阶段,和一个粗图构建阶段。我们还使用Kokkos框架表达了其他几种粗化算法,并讨论了它们的并行化。我们使用多层谱图划分作为主要案例研究,展示了并行HEC在NVIDIA图灵GPU和32核AMD Ryzen处理器上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信