Neural Network and Sparse Block Processing Based Nonlinear Adaptive Equalizer for MIMO OFDM Communication Systems

Basabadatta Mohanty, H. K. Sahoo, B. Patnaik
{"title":"Neural Network and Sparse Block Processing Based Nonlinear Adaptive Equalizer for MIMO OFDM Communication Systems","authors":"Basabadatta Mohanty, H. K. Sahoo, B. Patnaik","doi":"10.1109/TENCON.2018.8650367","DOIUrl":null,"url":null,"abstract":"In the proposed work presented in the paper, adaptive equalizer for MIMO-OFDM system is designed using neural network with functional expansions and neural weights are adjusted using sparse adaptive filter with block processing of input samples. By introducing l0-norm sparsity in the cost function of the block RLS (BRLS), equalization can be achieved for MIMO wireless channels with a comparatively less computational load. Nakagami-m fading channel model is used to represent the dispersive nature of fading wireless channel. 16-QAM constellation format is used to modulate the incoming data. The most important contribution of the paper lies in the inclusion of norm based sparsity in equalizer design which yields a low bit error rate (BER) and mean square error (MSE) even in low SNR conditins.","PeriodicalId":132900,"journal":{"name":"TENCON 2018 - 2018 IEEE Region 10 Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2018 - 2018 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2018.8650367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the proposed work presented in the paper, adaptive equalizer for MIMO-OFDM system is designed using neural network with functional expansions and neural weights are adjusted using sparse adaptive filter with block processing of input samples. By introducing l0-norm sparsity in the cost function of the block RLS (BRLS), equalization can be achieved for MIMO wireless channels with a comparatively less computational load. Nakagami-m fading channel model is used to represent the dispersive nature of fading wireless channel. 16-QAM constellation format is used to modulate the incoming data. The most important contribution of the paper lies in the inclusion of norm based sparsity in equalizer design which yields a low bit error rate (BER) and mean square error (MSE) even in low SNR conditins.
基于神经网络和稀疏块处理的MIMO OFDM通信系统非线性自适应均衡器
在本文提出的工作中,采用功能展开的神经网络设计MIMO-OFDM系统的自适应均衡器,并通过对输入样本进行分块处理的稀疏自适应滤波器调整神经权值。通过在块RLS (BRLS)的代价函数中引入10范数稀疏性,可以以相对较少的计算负荷实现MIMO无线信道的均衡。采用Nakagami-m衰落信道模型来表征衰落无线信道的色散特性。采用16-QAM星座格式调制入站数据。本文最重要的贡献在于在均衡器设计中包含基于范数的稀疏性,即使在低信噪比条件下也能产生低误码率(BER)和均方误差(MSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信