Target Tracking by Using Particle Filter in Sensor Networks

Dongbing Gu, Huosheng Hu
{"title":"Target Tracking by Using Particle Filter in Sensor Networks","authors":"Dongbing Gu, Huosheng Hu","doi":"10.2316/JOURNAL.206.2009.3.206-3273","DOIUrl":null,"url":null,"abstract":"This paper presents a distributed particle filter (DPF) over sensor networks. We propose two major steps to make a particle filter to work in a distributed way. The first step is the estimation of global mean and covariance of weighted particles by using an average consensus filter. Through this consensus filter, each sensor node can gradually diffuse its local mean and covariance of weighted particles over the entire network and asymptotically obtain the estimated global mean and covariance. The second step is the propagation of the estimated global mean and covariance through state transition distribution and likelihood distribution by using an unscented transformation (UT). Through this transformation, partial high order information of the estimated global mean and covariance can be incorporated into the estimates for non-linear models. Simulations of tracking tasks in a sensor network with 100 sensor nodes are given.","PeriodicalId":206015,"journal":{"name":"Int. J. Robotics Autom.","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/JOURNAL.206.2009.3.206-3273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a distributed particle filter (DPF) over sensor networks. We propose two major steps to make a particle filter to work in a distributed way. The first step is the estimation of global mean and covariance of weighted particles by using an average consensus filter. Through this consensus filter, each sensor node can gradually diffuse its local mean and covariance of weighted particles over the entire network and asymptotically obtain the estimated global mean and covariance. The second step is the propagation of the estimated global mean and covariance through state transition distribution and likelihood distribution by using an unscented transformation (UT). Through this transformation, partial high order information of the estimated global mean and covariance can be incorporated into the estimates for non-linear models. Simulations of tracking tasks in a sensor network with 100 sensor nodes are given.
基于粒子滤波的传感器网络目标跟踪
提出了一种基于传感器网络的分布式粒子滤波器(DPF)。我们提出了使粒子过滤器以分布式方式工作的两个主要步骤。第一步是利用平均一致性滤波器估计加权粒子的全局均值和协方差。通过该共识滤波器,每个传感器节点可以将其加权粒子的局部均值和协方差逐渐扩散到整个网络,并渐近地获得估计的全局均值和协方差。第二步是使用unscented变换(UT)通过状态转移分布和似然分布传播估计的全局均值和协方差。通过这种变换,可以将估计的全局均值和协方差的部分高阶信息纳入非线性模型的估计中。给出了具有100个传感器节点的传感器网络跟踪任务的仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信