Hybrid DCT-Wiener-Based interpolation using dual MMSE estimator scheme

Jun-Jie Huang, Kwok-Wai Hung, W. Siu
{"title":"Hybrid DCT-Wiener-Based interpolation using dual MMSE estimator scheme","authors":"Jun-Jie Huang, Kwok-Wai Hung, W. Siu","doi":"10.1109/ICDSP.2014.6900764","DOIUrl":null,"url":null,"abstract":"Hybrid DCT-Wiener-Based interpolation scheme using the learnt Wiener filter can significantly improve both objective and subjective performance by learning a suitable Wiener filter to fit the hybrid scheme with a good mix of spatial and transform domain process. Using the adaptive k-NN MMSE estimation for each block achieves extraordinary up-sampling results. However, it needs a large database and relatively long processing time. In this paper, we investigate using multiple learnt Wiener filters and combine the information from both the external training images and the original low-resolution image. The proposed dual MMSE estimators adaptively resolve the problem of one general learnt Wiener filter and use less computation time compared with that of the k-NN MMSE estimation. Experimental results show that the proposed dual MMSE estimators achieve around 1dB PSNR improvement compared to the original hybrid DCT-Wiener-Based scheme and provide more natural visual quality.","PeriodicalId":301856,"journal":{"name":"2014 19th International Conference on Digital Signal Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2014.6900764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid DCT-Wiener-Based interpolation scheme using the learnt Wiener filter can significantly improve both objective and subjective performance by learning a suitable Wiener filter to fit the hybrid scheme with a good mix of spatial and transform domain process. Using the adaptive k-NN MMSE estimation for each block achieves extraordinary up-sampling results. However, it needs a large database and relatively long processing time. In this paper, we investigate using multiple learnt Wiener filters and combine the information from both the external training images and the original low-resolution image. The proposed dual MMSE estimators adaptively resolve the problem of one general learnt Wiener filter and use less computation time compared with that of the k-NN MMSE estimation. Experimental results show that the proposed dual MMSE estimators achieve around 1dB PSNR improvement compared to the original hybrid DCT-Wiener-Based scheme and provide more natural visual quality.
基于双MMSE估计方案的混合dct - wiener插值
利用学习到的维纳滤波器,通过学习合适的维纳滤波器来拟合混合插值方案,将空间域和变换域过程很好的混合,可以显著提高基于dct -Wiener的混合插值方案的主客观性能。对每个块使用自适应k-NN MMSE估计,获得了非凡的上采样结果。然而,它需要一个大的数据库和相对较长的处理时间。在本文中,我们研究了使用多个学习到的维纳滤波器,并将来自外部训练图像和原始低分辨率图像的信息结合起来。所提出的双MMSE估计自适应地解决了一个通用学习维纳滤波器的问题,并且与k-NN MMSE估计相比减少了计算时间。实验结果表明,与原始的基于dct - wiener的混合方案相比,提出的双MMSE估计器的PSNR提高了约1dB,并且提供了更自然的视觉质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信