A hybrid feature selection algorithm for web document clustering

Asmaa Benghabrit, B. Ouhbi, E. Zemmouri, B. Frikh, Hicham Behja
{"title":"A hybrid feature selection algorithm for web document clustering","authors":"Asmaa Benghabrit, B. Ouhbi, E. Zemmouri, B. Frikh, Hicham Behja","doi":"10.1109/NGNS.2014.6990255","DOIUrl":null,"url":null,"abstract":"Knowing that not all the features in a dataset are important since some are redundant or irrelevant, the use of feature selection, an effective dimensionality reduction technique, is essential for web document clustering. For the clustering process, it represents the task of selecting important features for the underlying clusters. Therefore in order to pilot the web document clustering process, we propose a hybrid feature selection algorithm that selects simultaneously the most statistical and semantic informative features through a weighting model. The clustering process selects relevant features and performs document clustering iteratively until stability. The experimental results demonstrate the practical aspects of our algorithm and show that it generates more efficient clustering than the one obtained by other existing algorithms.","PeriodicalId":138330,"journal":{"name":"2014 International Conference on Next Generation Networks and Services (NGNS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Next Generation Networks and Services (NGNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NGNS.2014.6990255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Knowing that not all the features in a dataset are important since some are redundant or irrelevant, the use of feature selection, an effective dimensionality reduction technique, is essential for web document clustering. For the clustering process, it represents the task of selecting important features for the underlying clusters. Therefore in order to pilot the web document clustering process, we propose a hybrid feature selection algorithm that selects simultaneously the most statistical and semantic informative features through a weighting model. The clustering process selects relevant features and performs document clustering iteratively until stability. The experimental results demonstrate the practical aspects of our algorithm and show that it generates more efficient clustering than the one obtained by other existing algorithms.
web文档聚类的混合特征选择算法
要知道数据集中并非所有的特征都是重要的,因为有些特征是冗余的或不相关的,所以使用特征选择(一种有效的降维技术)对于web文档聚类是必不可少的。对于聚类过程,它代表了为底层聚类选择重要特征的任务。因此,为了试验web文档聚类过程,我们提出了一种混合特征选择算法,该算法通过加权模型同时选择最具统计和语义信息的特征。聚类过程选择相关特征,迭代聚类,直到稳定。实验结果证明了该算法的实用性,并表明该算法比现有算法的聚类效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信