Prescription Prediction towards Computer-Assisted Diagnosis for Kampo Medicine

Xiaoyu Mi, Hiroshi Ikeda, F. Nakazawa, Hidetoshi Matsuoka, E. Kataoka, Satoshi Hamaya, H. Odaguchi, Tatsuya Ishige, Yuichi Ito, Akino Wakasugi, Tadaaki Kawanabe, Mariko Sekine, T. Hanawa, Shinichi Yamaguchi, Tatsuo Tanaka
{"title":"Prescription Prediction towards Computer-Assisted Diagnosis for Kampo Medicine","authors":"Xiaoyu Mi, Hiroshi Ikeda, F. Nakazawa, Hidetoshi Matsuoka, E. Kataoka, Satoshi Hamaya, H. Odaguchi, Tatsuya Ishige, Yuichi Ito, Akino Wakasugi, Tadaaki Kawanabe, Mariko Sekine, T. Hanawa, Shinichi Yamaguchi, Tatsuo Tanaka","doi":"10.1109/CCATS.2015.38","DOIUrl":null,"url":null,"abstract":"This paper focuses on the attempt to formulate the prescription prediction logic based on the medical data analysis towards the future computer-assisted-diagnosis for Kampo medicine. We constructed and evaluated prediction models for some frequently-used prescriptions using six kinds of machine learning algorithms including artificial neural network, multinomial logit, random forest, support vector machine, k-nearest neighbor, and decision tree. The possibility of prescription prediction and the necessary amount of data required for robust prediction are clarified.","PeriodicalId":433684,"journal":{"name":"2015 International Conference on Computer Application Technologies","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Computer Application Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCATS.2015.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper focuses on the attempt to formulate the prescription prediction logic based on the medical data analysis towards the future computer-assisted-diagnosis for Kampo medicine. We constructed and evaluated prediction models for some frequently-used prescriptions using six kinds of machine learning algorithms including artificial neural network, multinomial logit, random forest, support vector machine, k-nearest neighbor, and decision tree. The possibility of prescription prediction and the necessary amount of data required for robust prediction are clarified.
面向汉布医学计算机辅助诊断的处方预测
本文主要针对未来汉布医学计算机辅助诊断,尝试建立基于医疗数据分析的处方预测逻辑。利用人工神经网络、多项logit、随机森林、支持向量机、k近邻和决策树等6种机器学习算法,构建了一些常用处方的预测模型并对其进行了评价。阐明了处方预测的可能性和稳健预测所需的必要数据量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信