Visual feature group matching for autonomous robot localization

E. Frontoni, P. Zingaretti
{"title":"Visual feature group matching for autonomous robot localization","authors":"E. Frontoni, P. Zingaretti","doi":"10.1109/ICIAP.2007.137","DOIUrl":null,"url":null,"abstract":"The Scale Invariant Feature Transform, SIFT, has been successfully applied to robot vision, object recognition, motion estimation, etc. In this work, we propose a SIFT improvement that makes feature extraction and matching more robust, adding a feature group matching layer, which takes into account mutual spatial relations between features. The feature group matching is very fast to be computed and leads to interesting results, above all for the absence of outliers. Results of vision based robot localization using the proposed approach are presented.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Scale Invariant Feature Transform, SIFT, has been successfully applied to robot vision, object recognition, motion estimation, etc. In this work, we propose a SIFT improvement that makes feature extraction and matching more robust, adding a feature group matching layer, which takes into account mutual spatial relations between features. The feature group matching is very fast to be computed and leads to interesting results, above all for the absence of outliers. Results of vision based robot localization using the proposed approach are presented.
自主机器人定位的视觉特征组匹配
尺度不变特征变换(SIFT)已成功应用于机器人视觉、目标识别、运动估计等领域。在这项工作中,我们提出了一种改进SIFT的方法,使特征提取和匹配更加鲁棒,增加了一个特征组匹配层,该层考虑了特征之间的相互空间关系。特征组匹配的计算速度非常快,并且会产生有趣的结果,尤其是因为没有异常值。最后给出了基于视觉的机器人定位的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信