A variational statistical framework for clustering human action videos

Wentao Fan, N. Bouguila
{"title":"A variational statistical framework for clustering human action videos","authors":"Wentao Fan, N. Bouguila","doi":"10.1109/WIAMIS.2012.6226748","DOIUrl":null,"url":null,"abstract":"In this paper, we present an unsupervised learning method, based on the finite Dirichlet mixture model and the bag-of-visual words representation, for categorizing human action videos. The proposed Bayesian model is learned through a principled variational framework. A variational form of the Deviance Information Criterion (DIC) is incorporated within the proposed statistical framework for evaluating the correctness of the model complexity (i.e. number of mixture components). The effectiveness of the proposed model is illustrated through empirical results.","PeriodicalId":346777,"journal":{"name":"2012 13th International Workshop on Image Analysis for Multimedia Interactive Services","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2012.6226748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present an unsupervised learning method, based on the finite Dirichlet mixture model and the bag-of-visual words representation, for categorizing human action videos. The proposed Bayesian model is learned through a principled variational framework. A variational form of the Deviance Information Criterion (DIC) is incorporated within the proposed statistical framework for evaluating the correctness of the model complexity (i.e. number of mixture components). The effectiveness of the proposed model is illustrated through empirical results.
人类动作视频聚类的变分统计框架
本文提出了一种基于有限Dirichlet混合模型和视觉词袋表示的无监督学习方法,用于对人类动作视频进行分类。所提出的贝叶斯模型是通过一个有原则的变分框架来学习的。偏差信息标准(DIC)的一种变分形式被纳入所提出的统计框架中,用于评估模型复杂性(即混合成分的数量)的正确性。实证结果表明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信