An Efficient Load Balancing Scheme for Gaming Server Using Proximal Policy Optimization Algorithm

Hye-young Kim
{"title":"An Efficient Load Balancing Scheme for Gaming Server Using Proximal Policy Optimization Algorithm","authors":"Hye-young Kim","doi":"10.3745/JIPS.03.0158","DOIUrl":null,"url":null,"abstract":"Large amount of data is being generated in gaming servers due to the increase in the number of users and the variety of game services being provided. In particular, load balancing schemes for gaming servers are crucial consideration. The existing literature proposes algorithms that distribute loads in servers by mostly concentrating on load balancing and cooperative offloading. However, many proposed schemes impose heavy restrictions and assumptions, and such a limited service classification method is not enough to satisfy the wide range of service requirements. We propose a load balancing agent that combines the dynamic allocation programming method, a type of greedy algorithm, and proximal policy optimization, a reinforcement learning. Also, we compare performances of our proposed scheme and those of a scheme from previous literature, ProGreGA, by running a simulation.","PeriodicalId":415161,"journal":{"name":"J. Inf. Process. Syst.","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Process. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/JIPS.03.0158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large amount of data is being generated in gaming servers due to the increase in the number of users and the variety of game services being provided. In particular, load balancing schemes for gaming servers are crucial consideration. The existing literature proposes algorithms that distribute loads in servers by mostly concentrating on load balancing and cooperative offloading. However, many proposed schemes impose heavy restrictions and assumptions, and such a limited service classification method is not enough to satisfy the wide range of service requirements. We propose a load balancing agent that combines the dynamic allocation programming method, a type of greedy algorithm, and proximal policy optimization, a reinforcement learning. Also, we compare performances of our proposed scheme and those of a scheme from previous literature, ProGreGA, by running a simulation.
基于近端策略优化算法的高效游戏服务器负载均衡方案
由于用户数量的增加和游戏服务的多样化,游戏服务器中产生了大量的数据。特别是,游戏服务器的负载平衡方案是至关重要的考虑因素。现有文献提出的算法主要集中在负载均衡和协同卸载的服务器上分配负载。然而,许多提出的方案施加了很大的限制和假设,这种有限的服务分类方法不足以满足广泛的服务需求。我们提出了一种负载平衡代理,它结合了动态分配规划方法(一种贪婪算法)和近端策略优化(一种强化学习)。此外,我们通过运行仿真比较了我们提出的方案与先前文献中的方案ProGreGA的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信