Multistage neural network for pattern recognition in mammogram screening

B. Zheng, W. Qian, L. Clarke
{"title":"Multistage neural network for pattern recognition in mammogram screening","authors":"B. Zheng, W. Qian, L. Clarke","doi":"10.1109/ICNN.1994.374887","DOIUrl":null,"url":null,"abstract":"A novel multistage neural network (MSNN) is proposed for locating and classification of micro-calcification in digital mammography. Backpropagation (BP) with Kalman filtering (KF) is used for training the MSNN. A new nonlinear decision method is proposed to improve the performance of the classification. The experimental results show that the sensitivity of this classification/detection is 100% with the false positive detection rate of less than 1 micro-calcification clusters (MCCs) per image. The proposed methods are automatic or operator independent and provide realistic image processing times as required for breast cancer screening programs. Full clinical analysis is planned using large databases.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

A novel multistage neural network (MSNN) is proposed for locating and classification of micro-calcification in digital mammography. Backpropagation (BP) with Kalman filtering (KF) is used for training the MSNN. A new nonlinear decision method is proposed to improve the performance of the classification. The experimental results show that the sensitivity of this classification/detection is 100% with the false positive detection rate of less than 1 micro-calcification clusters (MCCs) per image. The proposed methods are automatic or operator independent and provide realistic image processing times as required for breast cancer screening programs. Full clinical analysis is planned using large databases.<>
多阶段神经网络在乳房x光筛查中的模式识别
提出了一种新的多级神经网络(MSNN)用于数字乳房x线摄影中微钙化的定位和分类。利用反向传播(BP)和卡尔曼滤波(KF)对MSNN进行训练。为了提高分类性能,提出了一种新的非线性决策方法。实验结果表明,该分类/检测的灵敏度为100%,每幅图像的微钙化簇(mcc)的假阳性检出率小于1个。所提出的方法是自动的或独立于操作人员的,并提供乳腺癌筛查项目所需的真实图像处理时间。完整的临床分析计划使用大型数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信