Treatment of cement variables in the domain decomposition method for Maxwell’s equations

V. Rawat, Jin-Fa Lee
{"title":"Treatment of cement variables in the domain decomposition method for Maxwell’s equations","authors":"V. Rawat, Jin-Fa Lee","doi":"10.1109/APS.2007.4396904","DOIUrl":null,"url":null,"abstract":"In this contribution we focus our attention on the cement variables of the DDM and consider their theoretical and practical treatment. We first determine the correct functional space of the continuous variables and then examine two possible representations in the VFEM. One choice is shown to provide superior solver convergence though its use results in sub-optimal error convergence. We then propose and validate a remedy to this problem by special treatment of non-planar interfaces. Finally, we demonstrate the scalability of the resulting method.","PeriodicalId":117975,"journal":{"name":"2007 IEEE Antennas and Propagation Society International Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2007.4396904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this contribution we focus our attention on the cement variables of the DDM and consider their theoretical and practical treatment. We first determine the correct functional space of the continuous variables and then examine two possible representations in the VFEM. One choice is shown to provide superior solver convergence though its use results in sub-optimal error convergence. We then propose and validate a remedy to this problem by special treatment of non-planar interfaces. Finally, we demonstrate the scalability of the resulting method.
麦克斯韦方程组区域分解法中水泥变量的处理
在这篇文章中,我们将注意力集中在DDM的水泥变量上,并考虑它们的理论和实践处理。我们首先确定连续变量的正确泛函空间,然后研究两种可能的VFEM表示。有一种选择虽然会导致次优误差收敛,但它提供了较好的求解器收敛性。然后,我们提出并验证了一种通过特殊处理非平面界面来解决这个问题的方法。最后,我们演示了结果方法的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信