Deep convolutional encoder-decoders for deltoid segmentation using healthy versus pathological learning transferability

Pierre-Henri Conze, C. Pons, V. Burdin, F. Sheehan, S. Brochard
{"title":"Deep convolutional encoder-decoders for deltoid segmentation using healthy versus pathological learning transferability","authors":"Pierre-Henri Conze, C. Pons, V. Burdin, F. Sheehan, S. Brochard","doi":"10.1109/ISBI.2019.8759378","DOIUrl":null,"url":null,"abstract":"Shoulder muscle segmentation in patients with obstetrical brachial plexus palsy is a challenging task from magnetic resonance images. A reliable fully-automated method could greatly help clinicians to plan therapeutic interventions. Among various structures, shoulders comprise a rounded and triangular-shaped muscle located on top: the deltoid. The purpose of this work consists in investigating the feasibility of pathological deltoid segmentation using deep convolutional encoder-decoders. Given a limited amount of available annotated images, we study learning transferability from healthy to pathological data by comparing different learning schemes in terms of model generalizability. Extended versions of convolutional encoder-decoder architectures using an encoder pre-trained on non-medical data are proposed to improve the delineation accuracy. Promising results obtained on a dataset of 24 shoulder examinations offer new insights for force inference in musculo-skeletal disorder management.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Shoulder muscle segmentation in patients with obstetrical brachial plexus palsy is a challenging task from magnetic resonance images. A reliable fully-automated method could greatly help clinicians to plan therapeutic interventions. Among various structures, shoulders comprise a rounded and triangular-shaped muscle located on top: the deltoid. The purpose of this work consists in investigating the feasibility of pathological deltoid segmentation using deep convolutional encoder-decoders. Given a limited amount of available annotated images, we study learning transferability from healthy to pathological data by comparing different learning schemes in terms of model generalizability. Extended versions of convolutional encoder-decoder architectures using an encoder pre-trained on non-medical data are proposed to improve the delineation accuracy. Promising results obtained on a dataset of 24 shoulder examinations offer new insights for force inference in musculo-skeletal disorder management.
基于健康与病理学习可转移性的三角肌分割深度卷积编码器
从磁共振图像上看,产科臂丛神经麻痹患者的肩部肌肉分割是一项具有挑战性的任务。一个可靠的全自动方法可以极大地帮助临床医生计划治疗干预。在各种结构中,肩膀由位于顶部的圆形和三角形肌肉组成:三角肌。这项工作的目的在于研究使用深度卷积编码器-解码器进行病理三角分割的可行性。鉴于可用的注释图像数量有限,我们通过比较不同的学习方案来研究从健康数据到病理数据的学习可移植性。提出了卷积编码器-解码器架构的扩展版本,该架构使用对非医疗数据进行预训练的编码器来提高描述精度。在24个肩部检查数据集上获得的有希望的结果为肌肉骨骼疾病管理中的力推断提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信