Additional Reviewers

A. Tesanovic, Goran Manev, E. Vasilyeva, E. Knutov, S. Verwer
{"title":"Additional Reviewers","authors":"A. Tesanovic, Goran Manev, E. Vasilyeva, E. Knutov, S. Verwer","doi":"10.1109/PDP.2003.10007","DOIUrl":null,"url":null,"abstract":"A Bayesian hierarchical model is applied to the contextaware collaborative recommendation problem. The proposed method treats users, items, and contexts symmetrically, in contrast to existing contextaware extensions of collaborative filters, which treat them asymmetrically. Evaluation using internet questionnaire data demonstrates that the proposed method outperforms conventional collaborative filtering (CF) models and is very stable, even when the number of ratings is very small.","PeriodicalId":177556,"journal":{"name":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2003.10007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Bayesian hierarchical model is applied to the contextaware collaborative recommendation problem. The proposed method treats users, items, and contexts symmetrically, in contrast to existing contextaware extensions of collaborative filters, which treat them asymmetrically. Evaluation using internet questionnaire data demonstrates that the proposed method outperforms conventional collaborative filtering (CF) models and is very stable, even when the number of ratings is very small.
额外的评论家
将贝叶斯层次模型应用于上下文协同推荐问题。该方法对用户、项目和上下文进行对称处理,而现有的协作过滤器的上下文扩展对它们进行非对称处理。使用互联网问卷数据进行的评估表明,该方法优于传统的协同过滤(CF)模型,并且在评分数量非常小的情况下也非常稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信