The bit-reversal SDRAM address mapping

Jun Shao, B. Davis
{"title":"The bit-reversal SDRAM address mapping","authors":"Jun Shao, B. Davis","doi":"10.1145/1140389.1140396","DOIUrl":null,"url":null,"abstract":"The performance contributions of SDRAM address mapping techniques in the main memory of an embedded system are studied and examined. While spatial locality existing in the access stream increases SDRAM row hit rate, it also increases row conflicts. Mapping of the physical address bits into SDRAM column, row, bank and rank index impacts system performance significantly. A novel address mapping scheme, called bit-reversal, is described and experimentally compared against known methods. The bit-reversal address mapping increases SDRAM row hit rate from 43% to 66% by distributing conflicting memory accesses over independent SDRAM banks. Bit-reversal address mapping reduces the average memory access latency by 26%-29% over other methods, resulting in a 11.7%-13.5% reduction of total execution time. The configuration space of bit-reversal address mapping is explored. Finally, limited studies examining the impact of address mapping techniques in conjunction with SDRAM controller policy and virtual paging illustrate that mapping is better suited to virtual memory free embedded systems than desktop workstations incorporating paging mechanisms.","PeriodicalId":375451,"journal":{"name":"Software and Compilers for Embedded Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1140389.1140396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

The performance contributions of SDRAM address mapping techniques in the main memory of an embedded system are studied and examined. While spatial locality existing in the access stream increases SDRAM row hit rate, it also increases row conflicts. Mapping of the physical address bits into SDRAM column, row, bank and rank index impacts system performance significantly. A novel address mapping scheme, called bit-reversal, is described and experimentally compared against known methods. The bit-reversal address mapping increases SDRAM row hit rate from 43% to 66% by distributing conflicting memory accesses over independent SDRAM banks. Bit-reversal address mapping reduces the average memory access latency by 26%-29% over other methods, resulting in a 11.7%-13.5% reduction of total execution time. The configuration space of bit-reversal address mapping is explored. Finally, limited studies examining the impact of address mapping techniques in conjunction with SDRAM controller policy and virtual paging illustrate that mapping is better suited to virtual memory free embedded systems than desktop workstations incorporating paging mechanisms.
位反转的SDRAM地址映射
研究和检验了SDRAM地址映射技术在嵌入式系统主存中的性能贡献。访问流中的空间局部性增加了SDRAM的行命中率,同时也增加了行冲突。将物理地址位映射到SDRAM的列、行、行和秩索引会显著影响系统性能。描述了一种新的地址映射方案,称为位反转,并与已知方法进行了实验比较。位反转地址映射通过在独立的SDRAM银行上分配冲突的内存访问,将SDRAM行命中率从43%提高到66%。与其他方法相比,位反转地址映射使平均内存访问延迟减少了26%-29%,从而使总执行时间减少了11.7%-13.5%。探讨了位反转地址映射的配置空间。最后,有限的研究考察了地址映射技术与SDRAM控制器策略和虚拟分页的影响,表明映射更适合于没有虚拟内存的嵌入式系统,而不是结合分页机制的桌面工作站。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信