P. Craddock, Richard E. Lewis, J. Miles, A. Pomerantz
{"title":"THERMAL MATURITY-ADJUSTED LOG INTERPRETATION (TMALI) IN ORGANIC SHALE","authors":"P. Craddock, Richard E. Lewis, J. Miles, A. Pomerantz","doi":"10.30632/T60ALS-2019_JJJ","DOIUrl":null,"url":null,"abstract":"Petrophysical analysis of downhole logs requires accurate knowledge of matrix properties, commonly referred to as matrix adjustments. In organic-rich shale, the presence of abundant kerogen (solid and insoluble sedimentary organic matter) has a disproportionate impact on matrix properties because kerogen is compositionally distinct from all inorganic minerals that comprise the remainder of the solid matrix. As a consequence, matrix properties can be highly sensitive to kerogen properties. Moreover, the response of many downhole logs to kerogen is similar to their response to fluids. Relevant kerogen properties must be accurately known to separate tool responses to kerogen (in the matrix volume) and fluids (in the pore volume), to arrive at accurate volumetric interpretations. Unfortunately, relevant petrophysical properties of kerogen are poorly known in general and nearly always unknown in the formation of interest. A robust method of “thermal maturity-adjusted log interpretation” replaces these unknown or assumed kerogen properties with a consistent set of relevant properties specifically optimized for the organic shale of interest, derived from only a single estimate of thermal maturity of the kerogen. The method is founded on the study of more than 50 kerogens spanning eight major oiland gas-producing sedimentary basins, 300 Ma of depositional age, and thermal maturity from immature to dry gas (vitrinite reflectance, Ro, ranges from 0.5 to 4%). The determined kerogen properties include measured chemical (C, H, N, S, O) composition and skeletal (grain) density, as well as computed nuclear properties of apparent log density, hydrogen index, thermaland epithermal-neutron porosities, macroscopic thermal-neutron capture cross section, macroscopic fast-neutron elastic scattering cross section, and photoelectric factor. For kerogens relevant to the petroleum industry (i.e., type II kerogen with thermal maturity ranging from early oil to dry gas), it is demonstrated that petrophysical properties are controlled mainly by thermal maturity, with no observable differences between sedimentary basins. As a result, universal curves are established relating kerogen properties to thermal maturity of the kerogen, and the curves apply equally well in all studied shale plays. Sensitivity calculations and field examples demonstrate the importance of using a consistent set of accurate kerogen properties in downhole log analysis. Thermal maturity-adjusted log interpretation provides a robust estimate of these properties, enabling more accurate and confident interpretation of porosity, saturation, and hydrocarbon in place in organic-rich shales.","PeriodicalId":117571,"journal":{"name":"SPWLA 60th Annual Logging Symposium Transactions","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPWLA 60th Annual Logging Symposium Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30632/T60ALS-2019_JJJ","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Petrophysical analysis of downhole logs requires accurate knowledge of matrix properties, commonly referred to as matrix adjustments. In organic-rich shale, the presence of abundant kerogen (solid and insoluble sedimentary organic matter) has a disproportionate impact on matrix properties because kerogen is compositionally distinct from all inorganic minerals that comprise the remainder of the solid matrix. As a consequence, matrix properties can be highly sensitive to kerogen properties. Moreover, the response of many downhole logs to kerogen is similar to their response to fluids. Relevant kerogen properties must be accurately known to separate tool responses to kerogen (in the matrix volume) and fluids (in the pore volume), to arrive at accurate volumetric interpretations. Unfortunately, relevant petrophysical properties of kerogen are poorly known in general and nearly always unknown in the formation of interest. A robust method of “thermal maturity-adjusted log interpretation” replaces these unknown or assumed kerogen properties with a consistent set of relevant properties specifically optimized for the organic shale of interest, derived from only a single estimate of thermal maturity of the kerogen. The method is founded on the study of more than 50 kerogens spanning eight major oiland gas-producing sedimentary basins, 300 Ma of depositional age, and thermal maturity from immature to dry gas (vitrinite reflectance, Ro, ranges from 0.5 to 4%). The determined kerogen properties include measured chemical (C, H, N, S, O) composition and skeletal (grain) density, as well as computed nuclear properties of apparent log density, hydrogen index, thermaland epithermal-neutron porosities, macroscopic thermal-neutron capture cross section, macroscopic fast-neutron elastic scattering cross section, and photoelectric factor. For kerogens relevant to the petroleum industry (i.e., type II kerogen with thermal maturity ranging from early oil to dry gas), it is demonstrated that petrophysical properties are controlled mainly by thermal maturity, with no observable differences between sedimentary basins. As a result, universal curves are established relating kerogen properties to thermal maturity of the kerogen, and the curves apply equally well in all studied shale plays. Sensitivity calculations and field examples demonstrate the importance of using a consistent set of accurate kerogen properties in downhole log analysis. Thermal maturity-adjusted log interpretation provides a robust estimate of these properties, enabling more accurate and confident interpretation of porosity, saturation, and hydrocarbon in place in organic-rich shales.