A Neurofuzzy Adaptive Kalman Filter

P. J. Escamilla-Ambrosio
{"title":"A Neurofuzzy Adaptive Kalman Filter","authors":"P. J. Escamilla-Ambrosio","doi":"10.1109/IS.2006.348485","DOIUrl":null,"url":null,"abstract":"In this work the recently developed fuzzy logic-based adaptive Kalman filter (FL-AKF) is integrated into a neurofuzzy network structure to perform system identification and state estimation of unknown nonlinear systems. This approach, referred to as neurofuzzy adaptive Kalman filter, uses the error signal in the identification process as the measurement noise signal for the FL-AKF in order to estimate the modelling error at the same time in which system identification is performed by the neurofuzzy network. This has a stabilisation effect during the training process when noise is present in the training data. A simulated example is presented to validate the effectiveness of the proposed approach","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work the recently developed fuzzy logic-based adaptive Kalman filter (FL-AKF) is integrated into a neurofuzzy network structure to perform system identification and state estimation of unknown nonlinear systems. This approach, referred to as neurofuzzy adaptive Kalman filter, uses the error signal in the identification process as the measurement noise signal for the FL-AKF in order to estimate the modelling error at the same time in which system identification is performed by the neurofuzzy network. This has a stabilisation effect during the training process when noise is present in the training data. A simulated example is presented to validate the effectiveness of the proposed approach
神经模糊自适应卡尔曼滤波
本文将基于模糊逻辑的自适应卡尔曼滤波器(FL-AKF)集成到神经模糊网络结构中,对未知非线性系统进行系统辨识和状态估计。这种方法被称为神经模糊自适应卡尔曼滤波,它将辨识过程中的误差信号作为FL-AKF的测量噪声信号,以便在神经模糊网络进行系统辨识的同时估计建模误差。当训练数据中存在噪声时,这在训练过程中具有稳定效果。仿真结果验证了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信