{"title":"Type-checking zero-knowledge","authors":"M. Backes, Catalin Hritcu, Matteo Maffei","doi":"10.1145/1455770.1455816","DOIUrl":null,"url":null,"abstract":"This paper presents the first type system for statically analyzing security protocols that are based on zero-knowledge proofs. We show how certain properties offered by zero-knowledge proofs can be characterized in terms of authorization policies and statically enforced by a type system. The analysis is modular and compositional, and provides security proofs for an unbounded number of protocol executions. We develop a new type-checker that conducts the analysis in a fully automated manner. We exemplify the applicability of our technique to real-world protocols by verifying the authenticity and secrecy properties of the Direct Anonymous Attestation (DAA) protocol. The analysis of DAA takes less than three seconds.","PeriodicalId":440730,"journal":{"name":"Proceedings of the 15th ACM conference on Computer and communications security","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM conference on Computer and communications security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1455770.1455816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53
Abstract
This paper presents the first type system for statically analyzing security protocols that are based on zero-knowledge proofs. We show how certain properties offered by zero-knowledge proofs can be characterized in terms of authorization policies and statically enforced by a type system. The analysis is modular and compositional, and provides security proofs for an unbounded number of protocol executions. We develop a new type-checker that conducts the analysis in a fully automated manner. We exemplify the applicability of our technique to real-world protocols by verifying the authenticity and secrecy properties of the Direct Anonymous Attestation (DAA) protocol. The analysis of DAA takes less than three seconds.