A Self-Calibration Method for Installation Errors in IMU/Polarization Compass/Celestial Navigation System

Shanpeng Wang, Jian Yang, Xin Liu
{"title":"A Self-Calibration Method for Installation Errors in IMU/Polarization Compass/Celestial Navigation System","authors":"Shanpeng Wang, Jian Yang, Xin Liu","doi":"10.1109/ISAS59543.2023.10164331","DOIUrl":null,"url":null,"abstract":"Accurate calibration of installation errors is of paramount importance for achieving high-performance in integrated navigation systems. In this paper, a self-calibration method for addressing installation errors in an integrated inertial/polarization/celestial navigation system is proposed. The method utilizes the information from gravity, polarized E-vector, and sun to establish constrained relationship between the multiple vectors. By employing a nonlinear least squares method, the installation parameters are iteratively determined. The effectiveness of the proposed method is demonstrated through comprehensive simulation tests. The results reveal that the method achieves improved accuracy and robustness in estimating installation errors.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAS59543.2023.10164331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate calibration of installation errors is of paramount importance for achieving high-performance in integrated navigation systems. In this paper, a self-calibration method for addressing installation errors in an integrated inertial/polarization/celestial navigation system is proposed. The method utilizes the information from gravity, polarized E-vector, and sun to establish constrained relationship between the multiple vectors. By employing a nonlinear least squares method, the installation parameters are iteratively determined. The effectiveness of the proposed method is demonstrated through comprehensive simulation tests. The results reveal that the method achieves improved accuracy and robustness in estimating installation errors.
IMU/极化罗经/天体导航系统安装误差的自校正方法
精确标定安装误差对实现组合导航系统的高性能至关重要。提出了一种解决惯性/极化/天体组合导航系统安装误差的自标定方法。该方法利用重力、极化e矢量和太阳的信息,建立多个矢量之间的约束关系。采用非线性最小二乘法迭代确定安装参数。通过综合仿真试验验证了该方法的有效性。结果表明,该方法在估计安装误差方面具有较高的精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信