Evolving spiking neural network for robot locomotion generation

Noriko Takase, János Botzheim, N. Kubota
{"title":"Evolving spiking neural network for robot locomotion generation","authors":"Noriko Takase, János Botzheim, N. Kubota","doi":"10.1109/CEC.2015.7256939","DOIUrl":null,"url":null,"abstract":"In this paper, we propose locomotion generation for a mobile robot. Legged robot can walk in various complex terrains such as stairs as well as in flat environment. However, setting its behaviour to adapt to various environments in advance is very difficult. The robot can mimic the movement of organisms based on computational intelligence. In this study, we apply spiking neural network, which can take into account the transition of temporal information between the neurons. More specifically, the motion patterns are generated by applying a spiking neural network trained by Hebbian learning and evolution strategy, by using data provided by the physics engine measuring the distance walked by the robot and applied the motion patterns to real robot. Simulation was conducted to confirm the proposed technique.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7256939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we propose locomotion generation for a mobile robot. Legged robot can walk in various complex terrains such as stairs as well as in flat environment. However, setting its behaviour to adapt to various environments in advance is very difficult. The robot can mimic the movement of organisms based on computational intelligence. In this study, we apply spiking neural network, which can take into account the transition of temporal information between the neurons. More specifically, the motion patterns are generated by applying a spiking neural network trained by Hebbian learning and evolution strategy, by using data provided by the physics engine measuring the distance walked by the robot and applied the motion patterns to real robot. Simulation was conducted to confirm the proposed technique.
基于脉冲神经网络的机器人运动生成
本文提出了一种移动机器人的运动生成方法。腿式机器人不仅可以在平坦环境中行走,还可以在楼梯等各种复杂地形中行走。然而,预先设定其行为以适应各种环境是非常困难的。基于计算智能,机器人可以模仿生物体的运动。在本研究中,我们采用了尖峰神经网络,它可以考虑神经元之间的时间信息转移。具体来说,利用物理引擎提供的测量机器人行走距离的数据,利用Hebbian学习和进化策略训练的尖峰神经网络生成运动模式,并将运动模式应用于实际机器人。通过仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信