Efficient stream compaction on wide SIMD many-core architectures

M. Billeter, Ola Olsson, Ulf Assarsson
{"title":"Efficient stream compaction on wide SIMD many-core architectures","authors":"M. Billeter, Ola Olsson, Ulf Assarsson","doi":"10.1145/1572769.1572795","DOIUrl":null,"url":null,"abstract":"Stream compaction is a common parallel primitive used to remove unwanted elements in sparse data. This allows highly parallel algorithms to maintain performance over several processing steps and reduces overall memory usage. For wide SIMD many-core architectures, we present a novel stream compaction algorithm and explore several variations thereof. Our algorithm is designed to maximize concurrent execution, with minimal use of synchronization. Bandwidth and auxiliary storage requirements are reduced significantly, which allows for substantially better performance. We have tested our algorithms using CUDA on a PC with an NVIDIA GeForce GTX280 GPU. On this hardware, our reference implementation provides a 3x speedup over previous published algorithms.","PeriodicalId":163044,"journal":{"name":"Proceedings of the Conference on High Performance Graphics 2009","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High Performance Graphics 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1572769.1572795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

Abstract

Stream compaction is a common parallel primitive used to remove unwanted elements in sparse data. This allows highly parallel algorithms to maintain performance over several processing steps and reduces overall memory usage. For wide SIMD many-core architectures, we present a novel stream compaction algorithm and explore several variations thereof. Our algorithm is designed to maximize concurrent execution, with minimal use of synchronization. Bandwidth and auxiliary storage requirements are reduced significantly, which allows for substantially better performance. We have tested our algorithms using CUDA on a PC with an NVIDIA GeForce GTX280 GPU. On this hardware, our reference implementation provides a 3x speedup over previous published algorithms.
宽SIMD多核架构上的高效流压缩
流压缩是一种常见的并行原语,用于在稀疏数据中删除不需要的元素。这允许高度并行的算法在多个处理步骤中保持性能,并减少总体内存使用。对于宽SIMD多核架构,我们提出了一种新的流压缩算法,并探讨了其几种变体。我们的算法旨在最大限度地实现并发执行,同时尽量减少同步的使用。带宽和辅助存储需求显著降低,从而实现更好的性能。我们在PC上使用NVIDIA GeForce GTX280 GPU使用CUDA测试了我们的算法。在这种硬件上,我们的参考实现比以前发布的算法提供了3倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信