Laplacian Regularized Spatial-Aware Collaborative Competitive Representation for Hyperspectral Dimensionality Reduction

Chiranjibi Shah, Q. Du
{"title":"Laplacian Regularized Spatial-Aware Collaborative Competitive Representation for Hyperspectral Dimensionality Reduction","authors":"Chiranjibi Shah, Q. Du","doi":"10.1109/IGARSS46834.2022.9883385","DOIUrl":null,"url":null,"abstract":"Recently, graph-based methods have drawn increased attention for representing a high-dimensional features into a low- dimensional data. To obtain an optimal transform for the purpose of classification, different collaborative representation-based methods are for dimensionality reduction (DR). In previous work, a spatial-aware collaborative competitive representation (SaCCPGT) based unsupervised method was investigated for DR of hyperspectral imagery (HSI). It incorporates spatial information into the representation framework. However, it can be further enhanced by considering the data manifold structure. In this paper, Laplacian regularized SaCCPGT (LapSaCCPGT) is presented for DR of HSI to better utilize data structure information into the representation framework. The experimental results observed on different hyperspectral datasets demonstrate the superiority of the proposed LapSaCCPGT than the state-of-the-art DR methods.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9883385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, graph-based methods have drawn increased attention for representing a high-dimensional features into a low- dimensional data. To obtain an optimal transform for the purpose of classification, different collaborative representation-based methods are for dimensionality reduction (DR). In previous work, a spatial-aware collaborative competitive representation (SaCCPGT) based unsupervised method was investigated for DR of hyperspectral imagery (HSI). It incorporates spatial information into the representation framework. However, it can be further enhanced by considering the data manifold structure. In this paper, Laplacian regularized SaCCPGT (LapSaCCPGT) is presented for DR of HSI to better utilize data structure information into the representation framework. The experimental results observed on different hyperspectral datasets demonstrate the superiority of the proposed LapSaCCPGT than the state-of-the-art DR methods.
高光谱降维的拉普拉斯正则化空间感知协同竞争表示
近年来,基于图的方法在将高维特征表示为低维数据方面受到越来越多的关注。为了获得用于分类的最优变换,不同的基于协作表示的方法用于降维(DR)。在以往的工作中,研究了一种基于空间感知协同竞争表示(sacpgt)的无监督方法用于高光谱图像(HSI)的DR。它将空间信息整合到表示框架中。然而,它可以通过考虑数据流形结构进一步增强。为了更好地将数据结构信息运用到表示框架中,本文提出了用于恒生指数DR的拉普拉斯正则化SaCCPGT (LapSaCCPGT)。在不同的高光谱数据集上观测到的实验结果表明,所提出的lapsacpgt比目前最先进的DR方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信