Do You Need More Data? The DeepSignDB On-Line Handwritten Signature Biometric Database

Rubén Tolosana, R. Vera-Rodríguez, Julian Fierrez, A. Morales, J. Ortega-Garcia
{"title":"Do You Need More Data? The DeepSignDB On-Line Handwritten Signature Biometric Database","authors":"Rubén Tolosana, R. Vera-Rodríguez, Julian Fierrez, A. Morales, J. Ortega-Garcia","doi":"10.1109/ICDAR.2019.00185","DOIUrl":null,"url":null,"abstract":"Data have become one of the most valuable things in this new era where deep learning technology seems to overcome traditional approaches. However, in some tasks, such as the verification of handwritten signatures, the amount of publicly available data is scarce, what makes difficult to test the real limits of deep learning. In addition to the lack of public data, it is not easy to evaluate the improvements of novel approaches compared with the state of the art as different experimental protocols and conditions are usually considered for different signature databases. To tackle all these mentioned problems, the main contribution of this study is twofold: i) we present and describe the new DeepSignDB on-line handwritten signature biometric public database, and ii) we propose a standard experimental protocol and benchmark to be used for the research community in order to perform a fair comparison of novel approaches with the state of the art. The DeepSignDB database is obtained through the combination of some of the most popular on-line signature databases, and a novel dataset not presented yet. It comprises more than 70K signatures acquired using both stylus and finger inputs from a total of 1526 users. Two acquisition scenarios are considered, office and mobile, with a total of 8 different devices. Additionally, different types of impostors and number of acquisition sessions are considered along the database. The DeepSignDB and benchmark results are available in GitHub.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Data have become one of the most valuable things in this new era where deep learning technology seems to overcome traditional approaches. However, in some tasks, such as the verification of handwritten signatures, the amount of publicly available data is scarce, what makes difficult to test the real limits of deep learning. In addition to the lack of public data, it is not easy to evaluate the improvements of novel approaches compared with the state of the art as different experimental protocols and conditions are usually considered for different signature databases. To tackle all these mentioned problems, the main contribution of this study is twofold: i) we present and describe the new DeepSignDB on-line handwritten signature biometric public database, and ii) we propose a standard experimental protocol and benchmark to be used for the research community in order to perform a fair comparison of novel approaches with the state of the art. The DeepSignDB database is obtained through the combination of some of the most popular on-line signature databases, and a novel dataset not presented yet. It comprises more than 70K signatures acquired using both stylus and finger inputs from a total of 1526 users. Two acquisition scenarios are considered, office and mobile, with a total of 8 different devices. Additionally, different types of impostors and number of acquisition sessions are considered along the database. The DeepSignDB and benchmark results are available in GitHub.
你需要更多的数据吗?DeepSignDB在线手写签名生物识别数据库
在这个深度学习技术似乎超越传统方法的新时代,数据已经成为最有价值的东西之一。然而,在某些任务中,例如验证手写签名,公开可用的数据量很少,这使得很难测试深度学习的真正局限性。除了缺乏公共数据外,与现有技术相比,评估新方法的改进并不容易,因为不同的特征数据库通常考虑不同的实验方案和条件。为了解决所有这些提到的问题,本研究的主要贡献是双重的:i)我们提出并描述了新的DeepSignDB在线手写签名生物识别公共数据库,ii)我们提出了一个标准的实验协议和基准,用于研究界,以便对新方法与最先进的方法进行公平的比较。DeepSignDB数据库是通过结合一些最流行的在线特征数据库和一个尚未出现的新数据集而获得的。它包括超过70K的签名,使用手写笔和手指输入,从总共1526个用户。考虑办公和移动两种收购场景,共8种不同的设备。此外,数据库还考虑了不同类型的冒名顶替者和获取会话的数量。DeepSignDB和基准测试结果可在GitHub中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信