Geometric Structures on Manifolds

W. Goldman
{"title":"Geometric Structures on Manifolds","authors":"W. Goldman","doi":"10.1090/gsm/227","DOIUrl":null,"url":null,"abstract":"The study of locally homogeneous geometric structures on manifolds was initiated by Charles Ehresmann in 1936, who first proposed the classification of putting a “classical geometry” on a topological manifold. In the late 1970’s, locally homogeneous Riemannian structures on 3-manifolds formed the context for Bill Thurston’s Geometrization Conjecture, later proved by Perelman. This book develops the theory of geometric structures modeled on a homogeneous space of a Lie group, which are not necessarily Riemannian. Drawing on a diverse collection of techniques, we hope to invite researchers at all levels to this fascinating and currently extremely active area of mathematics.","PeriodicalId":140374,"journal":{"name":"Graduate Studies in Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graduate Studies in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/gsm/227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The study of locally homogeneous geometric structures on manifolds was initiated by Charles Ehresmann in 1936, who first proposed the classification of putting a “classical geometry” on a topological manifold. In the late 1970’s, locally homogeneous Riemannian structures on 3-manifolds formed the context for Bill Thurston’s Geometrization Conjecture, later proved by Perelman. This book develops the theory of geometric structures modeled on a homogeneous space of a Lie group, which are not necessarily Riemannian. Drawing on a diverse collection of techniques, we hope to invite researchers at all levels to this fascinating and currently extremely active area of mathematics.
流形的几何结构
流形上局部齐次几何结构的研究是由Charles Ehresmann于1936年发起的,他首先提出了在拓扑流形上放置“经典几何”的分类。在20世纪70年代后期,3流形上的局部齐次黎曼结构形成了比尔·瑟斯顿的几何化猜想的背景,后来由佩雷尔曼证明。这本书发展了几何结构的理论模型上的一个齐次空间的李群,这是不一定是黎曼。利用各种各样的技术,我们希望邀请各个层次的研究人员进入这个迷人的、目前极其活跃的数学领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信