Aspheric Surface Errors from Foucault Test Data

R. T. Holleran
{"title":"Aspheric Surface Errors from Foucault Test Data","authors":"R. T. Holleran","doi":"10.1364/oft.1980.mb2","DOIUrl":null,"url":null,"abstract":"The numerical integration of Foucault test data is simplified when readings are taken for the centers of contiguous zones of equal area. Height errors from the reference surface are shown to be proportional to the simple sump of knife-edge shifts from nominal settings. Change of reference curvature for minimum zonal error is effected by changing each shift by the same amount. Errors are exact to third-order for conic surfaces. The method is especially helpful when many tests must be made in the figuring process. Formulas are derived and an example is given, using both arithmetical and graphical error adjustment.","PeriodicalId":170034,"journal":{"name":"Workshop on Optical Fabrication and Testing","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Optical Fabrication and Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/oft.1980.mb2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The numerical integration of Foucault test data is simplified when readings are taken for the centers of contiguous zones of equal area. Height errors from the reference surface are shown to be proportional to the simple sump of knife-edge shifts from nominal settings. Change of reference curvature for minimum zonal error is effected by changing each shift by the same amount. Errors are exact to third-order for conic surfaces. The method is especially helpful when many tests must be made in the figuring process. Formulas are derived and an example is given, using both arithmetical and graphical error adjustment.
非球面误差的福柯测试数据
当取等面积连续区域的中心时,简化了福柯试验数据的数值积分。参考表面的高度误差显示为与标称设置的简单刀口位移成正比。对于最小纬向误差,参考曲率的变化取决于每次偏移量的变化。圆锥曲面的误差精确到三阶。在计算过程中需要进行多次试验时,该方法特别有用。推导了计算公式并给出了算例,采用了算术和图形两种方法进行误差平差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信