Robust traffic sign recognition with feature extraction and k-NN classification methods

Yan Han, K. Virupakshappa, E. Oruklu
{"title":"Robust traffic sign recognition with feature extraction and k-NN classification methods","authors":"Yan Han, K. Virupakshappa, E. Oruklu","doi":"10.1109/EIT.2015.7293386","DOIUrl":null,"url":null,"abstract":"In this paper, a robust traffic sign recognition system is introduced for driver assistance applications and/or autonomous cars. The system incorporates two major operations, traffic sign detection and classification. The sign detection is based on color segmentation and incorporates hue detection, morphological filter and labeling. A nearest neighbor classifier is introduced for sign classification. The training features are extracted by SURF algorithm. Three feature extraction strategies are compared to find an optimal feature database for training. The proposed system benefits from the SURF algorithm, which achieves invariance to the rotated, skewed and occluded signs. Extensive experimental results show detection accuracy reaching up to 97.54%.","PeriodicalId":415614,"journal":{"name":"2015 IEEE International Conference on Electro/Information Technology (EIT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2015.7293386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In this paper, a robust traffic sign recognition system is introduced for driver assistance applications and/or autonomous cars. The system incorporates two major operations, traffic sign detection and classification. The sign detection is based on color segmentation and incorporates hue detection, morphological filter and labeling. A nearest neighbor classifier is introduced for sign classification. The training features are extracted by SURF algorithm. Three feature extraction strategies are compared to find an optimal feature database for training. The proposed system benefits from the SURF algorithm, which achieves invariance to the rotated, skewed and occluded signs. Extensive experimental results show detection accuracy reaching up to 97.54%.
基于特征提取和k-NN分类方法的鲁棒交通标志识别
本文介绍了一种用于驾驶辅助应用和/或自动驾驶汽车的鲁棒交通标志识别系统。该系统包括两个主要的操作,交通标志检测和分类。该方法以颜色分割为基础,结合了色相检测、形态滤波和标记。引入最近邻分类器进行符号分类。采用SURF算法提取训练特征。比较了三种特征提取策略,找到了最优的训练特征库。该系统得益于SURF算法,实现了对旋转、倾斜和遮挡标志的不变性。大量实验结果表明,检测精度可达97.54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信