Knowledge base population and visualization using an ontology based on semantic roles

Maryam Siahbani, Ravikiran Vadlapudi, M. Whitney, Anoop Sarkar
{"title":"Knowledge base population and visualization using an ontology based on semantic roles","authors":"Maryam Siahbani, Ravikiran Vadlapudi, M. Whitney, Anoop Sarkar","doi":"10.1145/2509558.2509573","DOIUrl":null,"url":null,"abstract":"This paper extracts facts using \"micro-reading\" of text in contrast to approaches that extract common-sense knowledge using \"macro-reading\" methods. Our goal is to extract detailed facts about events from natural language using a predicate-centered view of events (who did what to whom, when and how). We exploit semantic role labels in order to create a novel predicate-centric ontology for entities in our knowledge base. This allows users to find uncommon facts easily. To this end, we tightly couple our knowledge base and ontology to an information visualization system that can be used to explore and navigate events extracted from a large natural language text collection. We use our methodology to create a web-based visual browser of history events in Wikipedia.","PeriodicalId":371465,"journal":{"name":"Conference on Automated Knowledge Base Construction","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Automated Knowledge Base Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2509558.2509573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper extracts facts using "micro-reading" of text in contrast to approaches that extract common-sense knowledge using "macro-reading" methods. Our goal is to extract detailed facts about events from natural language using a predicate-centered view of events (who did what to whom, when and how). We exploit semantic role labels in order to create a novel predicate-centric ontology for entities in our knowledge base. This allows users to find uncommon facts easily. To this end, we tightly couple our knowledge base and ontology to an information visualization system that can be used to explore and navigate events extracted from a large natural language text collection. We use our methodology to create a web-based visual browser of history events in Wikipedia.
基于语义角色的本体的知识库填充和可视化
本文通过对文本的“微观阅读”提取事实,与使用“宏观阅读”方法提取常识的方法形成对比。我们的目标是使用以谓词为中心的事件视图(谁对谁做了什么,何时以及如何做)从自然语言中提取有关事件的详细事实。我们利用语义角色标签来为我们的知识库中的实体创建一个新的以谓词为中心的本体。这使得用户可以很容易地发现不寻常的事实。为此,我们将知识库和本体与信息可视化系统紧密耦合,该系统可用于探索和导航从大型自然语言文本集合中提取的事件。我们使用我们的方法来创建一个基于web的维基百科历史事件可视化浏览器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信