ESTIMATION OF THE SLIP LENGTH IN THE FLOW OF LIQUID IN MICRO-CHANNELS

Y. Kovetska
{"title":"ESTIMATION OF THE SLIP LENGTH IN THE FLOW OF LIQUID IN MICRO-CHANNELS","authors":"Y. Kovetska","doi":"10.31472/IHE.2.2018.02","DOIUrl":null,"url":null,"abstract":"Research review of phenomenon for slip flow in micro and nanocannels is presented in the paper. The analysis of theoretical and experimental data characterizing the slip length is carried out. In slip flow in microchannels the slip length is affected by the contact angle of the liquid with the surface, shear stress, pressure, dissipative heating, the amount and nature of the dissolved gas in the liquid, electrical characteristics, surface roughness. Studies of flow in microchannels with hydrophobic walls, which are based on molecular dynamics, showed that the slip length has order of 20 nm. This is much less than the values observed in the experiment. The introduction of an effective (apparent) slip length suggests the existence of a thin layer of gas bubbles near the hydrophobic surface or liquid layer with low value of viscosity and density. Since the idealized model for the total coverage of a hydrophobic surface by gas bubbles gives, as a rule, overestimated values of the slip length in comparison with experimental ones, some researchers consider the inhomogeneous coating of the wall by gas bubbles. In this case, the effect of a layer with a lower viscosity on the slip length turns out to be weaker.","PeriodicalId":133229,"journal":{"name":"Industrial Heat Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Heat Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31472/IHE.2.2018.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Research review of phenomenon for slip flow in micro and nanocannels is presented in the paper. The analysis of theoretical and experimental data characterizing the slip length is carried out. In slip flow in microchannels the slip length is affected by the contact angle of the liquid with the surface, shear stress, pressure, dissipative heating, the amount and nature of the dissolved gas in the liquid, electrical characteristics, surface roughness. Studies of flow in microchannels with hydrophobic walls, which are based on molecular dynamics, showed that the slip length has order of 20 nm. This is much less than the values observed in the experiment. The introduction of an effective (apparent) slip length suggests the existence of a thin layer of gas bubbles near the hydrophobic surface or liquid layer with low value of viscosity and density. Since the idealized model for the total coverage of a hydrophobic surface by gas bubbles gives, as a rule, overestimated values of the slip length in comparison with experimental ones, some researchers consider the inhomogeneous coating of the wall by gas bubbles. In this case, the effect of a layer with a lower viscosity on the slip length turns out to be weaker.
液体在微通道中流动时滑移长度的估计
本文综述了国内外关于微纳米沟道内滑移流动现象的研究进展。对表征滑移长度的理论和实验数据进行了分析。在微通道中的滑移流动中,滑移长度受液体与表面的接触角、剪切应力、压力、耗散热量、液体中溶解气体的数量和性质、电学特性、表面粗糙度等因素的影响。基于分子动力学的疏水壁微通道流动研究表明,微通道的滑移长度约为20 nm。这比实验中观察到的值要小得多。有效(表观)滑移长度的引入表明在疏水表面或具有低粘度和密度值的液体层附近存在一薄层气泡。由于与实验结果相比,理想的气泡覆盖疏水表面的模型通常高估了滑移长度的值,因此一些研究人员考虑了气泡对壁的不均匀涂层。在这种情况下,黏度较低的层对滑移长度的影响较弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信