Applications of a new transference theorem to Ajtai's connection factor

Jin-Yi Cai
{"title":"Applications of a new transference theorem to Ajtai's connection factor","authors":"Jin-Yi Cai","doi":"10.1109/CCC.1999.766278","DOIUrl":null,"url":null,"abstract":"We apply a new transference theorem from the geometry of numbers to Ajtai's connection of average-case to worst-case complexity of lattice problems. We also derive stronger bounds for the special class of lattices which possess n/sup /spl epsiv//-unique shortest lattice vectors. This class of lattices plays a significant role in Ajtai's connection of average-case to worst-case complexity of the shortest lattice vector problem, and in the Ajtai-Dwork public-key cryptosystem. Our proofs are non-constructive, based on methods from harmonic analysis. They yield currently the best Ajtai connection factors.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"3 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.1999.766278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We apply a new transference theorem from the geometry of numbers to Ajtai's connection of average-case to worst-case complexity of lattice problems. We also derive stronger bounds for the special class of lattices which possess n/sup /spl epsiv//-unique shortest lattice vectors. This class of lattices plays a significant role in Ajtai's connection of average-case to worst-case complexity of the shortest lattice vector problem, and in the Ajtai-Dwork public-key cryptosystem. Our proofs are non-constructive, based on methods from harmonic analysis. They yield currently the best Ajtai connection factors.
一个新的转移定理在Ajtai连接因子中的应用
将数几何中的一个新的迁移定理应用到Ajtai格问题的平均情况到最坏情况复杂性的联系中。对于具有n/sup /spl / epsiv//-唯一最短格向量的特殊格类,我们也给出了更强的界。这类格在Ajtai最短格向量问题的平均情况到最坏情况复杂度的连接以及Ajtai- dwork公钥密码系统中起着重要的作用。我们的证明是非建设性的,是基于谐波分析的方法。它们产生了目前最好的Ajtai连接因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信