Mokhtar Mohamed, Xing-gang Yan, S. Spurgeon, B. Jiang
{"title":"Robust sliding mode observer design for interconnected systems","authors":"Mokhtar Mohamed, Xing-gang Yan, S. Spurgeon, B. Jiang","doi":"10.1109/CDC.2016.7799230","DOIUrl":null,"url":null,"abstract":"In this paper, a class of nonlinear interconnected systems is considered in the presence of structured and unstructured uncertainties. The bounds on the uncertainties are nonlinear and are employed in the observer design to reject the effect of the uncertainties. Under the condition that the structure matrices of the uncertainties are known, a robust sliding mode observer is designed and a set of sufficient conditions is developed such that the error dynamics are asymptotically stable. If the structure of the uncertainties is unknown, an untimately bounded observer is developed using sliding mode techniques. The obtained results are applied to a multimachine power system to demonstrate the effectiveness of the developed methods.","PeriodicalId":183381,"journal":{"name":"2016 IEEE 55th Conference on Decision and Control (CDC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 55th Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2016.7799230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, a class of nonlinear interconnected systems is considered in the presence of structured and unstructured uncertainties. The bounds on the uncertainties are nonlinear and are employed in the observer design to reject the effect of the uncertainties. Under the condition that the structure matrices of the uncertainties are known, a robust sliding mode observer is designed and a set of sufficient conditions is developed such that the error dynamics are asymptotically stable. If the structure of the uncertainties is unknown, an untimately bounded observer is developed using sliding mode techniques. The obtained results are applied to a multimachine power system to demonstrate the effectiveness of the developed methods.