COMMUTATIVE NEUTRIX CONVOLUTION PRODUCT OF GENERALIZED FRESNEL COSINE INTEGRALS AND APPLICATIONS

L. Lazarova, M. Miteva, Teuta Jusufi-Zenku
{"title":"COMMUTATIVE NEUTRIX CONVOLUTION PRODUCT OF GENERALIZED FRESNEL COSINE INTEGRALS AND APPLICATIONS","authors":"L. Lazarova, M. Miteva, Teuta Jusufi-Zenku","doi":"10.37418/jcsam.3.2.4","DOIUrl":null,"url":null,"abstract":"The generalized Fresnel cosine integral $C_k(x)$ and its associated functions $C_{k+}(x)$ and $C_{k-}(x)$ are defined as locally summable functions on the real line. The generalized Fresnel cosine integrals have huge applications in physics, specially in optics and electromaghetics. In many diffraction problems the generalized Fresnel integrals plays an important role. In this paper are calculated the commutative neutrix convolutions of the generalized Fresnel cosine integral and its associated functions with $x^r, r=0,1,2,\\dots$.","PeriodicalId":361024,"journal":{"name":"Journal of Computer Science and Applied Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/jcsam.3.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The generalized Fresnel cosine integral $C_k(x)$ and its associated functions $C_{k+}(x)$ and $C_{k-}(x)$ are defined as locally summable functions on the real line. The generalized Fresnel cosine integrals have huge applications in physics, specially in optics and electromaghetics. In many diffraction problems the generalized Fresnel integrals plays an important role. In this paper are calculated the commutative neutrix convolutions of the generalized Fresnel cosine integral and its associated functions with $x^r, r=0,1,2,\dots$.
广义菲涅耳余弦积分的交换中性卷积积及其应用
将广义菲涅耳余弦积分$C_k(x)$及其关联函数$C_{k+}(x)$和$C_{k-}(x)$定义为实线上的局部可和函数。广义菲涅耳余弦积分在物理学,特别是光学和电磁学中有着广泛的应用。在许多衍射问题中,广义菲涅耳积分起着重要的作用。本文计算了广义菲涅耳余弦积分及其相关函数在$x^r, r=0,1,2,\点$下的交换中性卷积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信