{"title":"The fibers of the ramified Prym map","authors":"P. Frediani, J. Naranjo, I. Spelta","doi":"10.1142/S0219199721500309","DOIUrl":null,"url":null,"abstract":"We study the ramified Prym map $\\mathcal P_{g,r} \\longrightarrow \\mathcal A_{g-1+\\frac r2}^{\\delta}$ which assigns to a ramified double cover of a smooth irreducible curve of genus $g$ ramified in $r$ points the Prym variety of the covering. We focus on the six cases where the dimension of the source is strictly greater than the dimension of the target giving a geometric description of the generic fibre. We also give an explicit example of a totally geodesic curve which is an irreducible component of a fibre of the Prym map ${\\mathcal P}_{1,2}$.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219199721500309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We study the ramified Prym map $\mathcal P_{g,r} \longrightarrow \mathcal A_{g-1+\frac r2}^{\delta}$ which assigns to a ramified double cover of a smooth irreducible curve of genus $g$ ramified in $r$ points the Prym variety of the covering. We focus on the six cases where the dimension of the source is strictly greater than the dimension of the target giving a geometric description of the generic fibre. We also give an explicit example of a totally geodesic curve which is an irreducible component of a fibre of the Prym map ${\mathcal P}_{1,2}$.