The fibers of the ramified Prym map

P. Frediani, J. Naranjo, I. Spelta
{"title":"The fibers of the ramified Prym map","authors":"P. Frediani, J. Naranjo, I. Spelta","doi":"10.1142/S0219199721500309","DOIUrl":null,"url":null,"abstract":"We study the ramified Prym map $\\mathcal P_{g,r} \\longrightarrow \\mathcal A_{g-1+\\frac r2}^{\\delta}$ which assigns to a ramified double cover of a smooth irreducible curve of genus $g$ ramified in $r$ points the Prym variety of the covering. We focus on the six cases where the dimension of the source is strictly greater than the dimension of the target giving a geometric description of the generic fibre. We also give an explicit example of a totally geodesic curve which is an irreducible component of a fibre of the Prym map ${\\mathcal P}_{1,2}$.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219199721500309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We study the ramified Prym map $\mathcal P_{g,r} \longrightarrow \mathcal A_{g-1+\frac r2}^{\delta}$ which assigns to a ramified double cover of a smooth irreducible curve of genus $g$ ramified in $r$ points the Prym variety of the covering. We focus on the six cases where the dimension of the source is strictly greater than the dimension of the target giving a geometric description of the generic fibre. We also give an explicit example of a totally geodesic curve which is an irreducible component of a fibre of the Prym map ${\mathcal P}_{1,2}$.
分叉的Prym图的纤维
我们研究了分枝Prym图$\mathcal P_{g,r} \longrightarrow \mathcal A_{g-1+\frac r2}^{\delta}$,它分配给一个分枝双重覆盖的光滑不可约曲线属$g$,分枝在$r$点覆盖的Prym变化。我们专注于六种情况,其中源的尺寸严格大于给出通用纤维的几何描述的目标的尺寸。我们还给出了一个完全测地线曲线的显式例子,它是Prym图${\mathcal P}_{1,2}$的纤维的不可约分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信