The Mobile Server Problem

Björn Feldkord, F. Heide
{"title":"The Mobile Server Problem","authors":"Björn Feldkord, F. Heide","doi":"10.1145/3087556.3087575","DOIUrl":null,"url":null,"abstract":"We introduce the mobile server problem, inspired by current trends to move computational tasks from cloud structures to multiple devices close to the end user. An example for this are embedded systems in autonomous cars that communicate in order to coordinate their actions. Our model is a variant of the classical Page Migration Problem. More formally, we consider a mobile server holding a data page. The server can move in the Euclidean space (of arbitrary dimension). In every round, requests for data items from the page pop up at arbitrary points in the space. The requests are served, each at a cost of the distance from the requesting point and the server, and the mobile server may move, at a cost D times the distance traveled for some constant D. We assume a maximum distance m the server is allowed to move per round. We show that no online algorithm can achieve a competitive ratio independent of the length of the input sequence in this setting. Hence we augment the maximum movement distance of the online algorithms to (1+δ) times the maximum distance of the offline solution. We provide a deterministic algorithm which is simple to describe and works for multiple variants of our problem. The algorithm achieves almost tight competitive ratios independent of the length of the input sequence.","PeriodicalId":162994,"journal":{"name":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087556.3087575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We introduce the mobile server problem, inspired by current trends to move computational tasks from cloud structures to multiple devices close to the end user. An example for this are embedded systems in autonomous cars that communicate in order to coordinate their actions. Our model is a variant of the classical Page Migration Problem. More formally, we consider a mobile server holding a data page. The server can move in the Euclidean space (of arbitrary dimension). In every round, requests for data items from the page pop up at arbitrary points in the space. The requests are served, each at a cost of the distance from the requesting point and the server, and the mobile server may move, at a cost D times the distance traveled for some constant D. We assume a maximum distance m the server is allowed to move per round. We show that no online algorithm can achieve a competitive ratio independent of the length of the input sequence in this setting. Hence we augment the maximum movement distance of the online algorithms to (1+δ) times the maximum distance of the offline solution. We provide a deterministic algorithm which is simple to describe and works for multiple variants of our problem. The algorithm achieves almost tight competitive ratios independent of the length of the input sequence.
移动服务器问题
我们介绍移动服务器问题,受当前趋势的启发,将计算任务从云结构转移到接近最终用户的多个设备。这方面的一个例子是自动驾驶汽车中的嵌入式系统,它们通过通信来协调它们的行动。我们的模型是经典页面迁移问题的一个变体。更正式地说,我们考虑一个持有数据页面的移动服务器。服务器可以在欧几里得空间(任意维度)中移动。在每一轮中,对来自页面的数据项的请求会在空间中的任意点弹出。请求被服务,每个请求的代价是请求点到服务器的距离,移动服务器可能会移动,代价是D乘以某个常数D所走过的距离,我们假设服务器每轮允许移动的最大距离为m。我们表明,在这种情况下,没有在线算法可以获得与输入序列长度无关的竞争比。因此,我们将在线算法的最大移动距离增加到(1+δ)乘以离线解决方案的最大距离。我们提供了一种确定性算法,它易于描述,并适用于我们问题的多种变体。该算法实现了与输入序列长度无关的几乎紧密的竞争比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信