{"title":"Global Optimisation of a Transonic Fan Blade Through AI-Enabled Active Subspaces","authors":"Diego I. Lopez, T. Ghisu, S. Shahpar","doi":"10.1115/GT2021-59166","DOIUrl":null,"url":null,"abstract":"\n The increased need to design higher performing aerodynamic shapes has led to design optimisation cycles requiring high-fidelity CFD models and high-dimensional parametrisation schemes. The computational cost of employing global search algorithms on such scenarios has typically been prohibitive for most academic and industrial environments. In this paper, a novel strategy is presented that leverages the capabilities of Artificial Neural Networks for regressing complex unstructured data, while coupling them with dimensionality reduction algorithms. This approach enables employing global-based optimisation methods on high-dimensional applications through a reduced computational cost. This methodology is demonstrated on the efficiency optimisation of a modern jet engine fan blade with constrained pressure ratio. The outcome is compared against a state-of-the-art adjoint-based approach. Results indicate the strategy proposed achieves comparable improvements to its adjoint counterpart with a reduced computational cost, and can scale better to multi-objective optimisation applications.","PeriodicalId":257596,"journal":{"name":"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2021-59166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The increased need to design higher performing aerodynamic shapes has led to design optimisation cycles requiring high-fidelity CFD models and high-dimensional parametrisation schemes. The computational cost of employing global search algorithms on such scenarios has typically been prohibitive for most academic and industrial environments. In this paper, a novel strategy is presented that leverages the capabilities of Artificial Neural Networks for regressing complex unstructured data, while coupling them with dimensionality reduction algorithms. This approach enables employing global-based optimisation methods on high-dimensional applications through a reduced computational cost. This methodology is demonstrated on the efficiency optimisation of a modern jet engine fan blade with constrained pressure ratio. The outcome is compared against a state-of-the-art adjoint-based approach. Results indicate the strategy proposed achieves comparable improvements to its adjoint counterpart with a reduced computational cost, and can scale better to multi-objective optimisation applications.