Fusing Semantic Segmentation and Object Detection for Visual SLAM in Dynamic Scenes

Peilin Yu, Chi Guo, Yang Liu, Huyin Zhang
{"title":"Fusing Semantic Segmentation and Object Detection for Visual SLAM in Dynamic Scenes","authors":"Peilin Yu, Chi Guo, Yang Liu, Huyin Zhang","doi":"10.1145/3489849.3489882","DOIUrl":null,"url":null,"abstract":"The assumption of static scenes limits the performance of traditional visual SLAM. Many existing solutions adopt deep learning methods or geometric constraints to solve the problem of dynamic scenes, but these schemes are either low efficiency or lack of robustness to a certain extent. In this paper, we propose a solution combining object detection and semantic segmentation to obtain the prior contours of potential dynamic objects. With this prior information, geometric constraints techniques are utilized to assist with removing dynamic feature points. Finally, the evaluation with the public datasets demonstrates that our proposed method can improve the accuracy of pose estimation and robustness of visual SLAM with no efficiency loss in high dynamic scenarios.","PeriodicalId":345527,"journal":{"name":"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489849.3489882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The assumption of static scenes limits the performance of traditional visual SLAM. Many existing solutions adopt deep learning methods or geometric constraints to solve the problem of dynamic scenes, but these schemes are either low efficiency or lack of robustness to a certain extent. In this paper, we propose a solution combining object detection and semantic segmentation to obtain the prior contours of potential dynamic objects. With this prior information, geometric constraints techniques are utilized to assist with removing dynamic feature points. Finally, the evaluation with the public datasets demonstrates that our proposed method can improve the accuracy of pose estimation and robustness of visual SLAM with no efficiency loss in high dynamic scenarios.
动态场景下视觉SLAM的语义分割与目标检测融合
静态场景的假设限制了传统视觉SLAM的性能。现有的许多解决方案采用深度学习方法或几何约束来解决动态场景问题,但这些方案要么效率低,要么在一定程度上缺乏鲁棒性。本文提出了一种结合目标检测和语义分割的方法来获取潜在动态目标的先验轮廓。利用这些先验信息,利用几何约束技术辅助去除动态特征点。最后,通过公共数据集的评估表明,该方法在高动态场景下可以提高视觉SLAM的姿态估计精度和鲁棒性,且没有效率损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信