On the lactone content distribution estimation in Andrographis paniculata (burm.f.) wall.ex nees using Hyperspectral Images and U-Net Network

N. Rojrattanatrai, T. Kasetkasem, T. Phatrapornant, C. Theerawitaya, D. Chungloo, S. Cha-um, Masahiro Yamaguchi
{"title":"On the lactone content distribution estimation in Andrographis paniculata (burm.f.) wall.ex nees using Hyperspectral Images and U-Net Network","authors":"N. Rojrattanatrai, T. Kasetkasem, T. Phatrapornant, C. Theerawitaya, D. Chungloo, S. Cha-um, Masahiro Yamaguchi","doi":"10.1109/ECTI-CON58255.2023.10153360","DOIUrl":null,"url":null,"abstract":"Hyperspectral reflectance data in the VNIR-SWIR range (400-2500nm) are commonly used to non-destructively and contactless measure the chemical composition of the plants. Most traditional methods are based on non-spatial analysis, that method required the average spectral data to represent the entire image, resulting in the loss of spatial information. To address this issue, we utilize a U-Net network to preserve spatial information while also allowing for the identification and quantification of lactone content in the image. The resulting distribution map provides a clear visualization of lactone content throughout the field or crop, making it easy to identify areas with high or low lactone levels. The pre-processing method includes image registration, outlier removal, spectral smoothing, and normalization. These steps are designed to correct errors and improve the quality of the image and masking. According to the experimental results, the U-Net model achieved R2, RMSE, and DICE of 0.718, 11.66, and 89.92%, respectively. The results show that using hyperspectral images combined with the U-Net network can perform a reliable and accurate prediction model for determining lactone content in A. paniculata.","PeriodicalId":340768,"journal":{"name":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTI-CON58255.2023.10153360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral reflectance data in the VNIR-SWIR range (400-2500nm) are commonly used to non-destructively and contactless measure the chemical composition of the plants. Most traditional methods are based on non-spatial analysis, that method required the average spectral data to represent the entire image, resulting in the loss of spatial information. To address this issue, we utilize a U-Net network to preserve spatial information while also allowing for the identification and quantification of lactone content in the image. The resulting distribution map provides a clear visualization of lactone content throughout the field or crop, making it easy to identify areas with high or low lactone levels. The pre-processing method includes image registration, outlier removal, spectral smoothing, and normalization. These steps are designed to correct errors and improve the quality of the image and masking. According to the experimental results, the U-Net model achieved R2, RMSE, and DICE of 0.718, 11.66, and 89.92%, respectively. The results show that using hyperspectral images combined with the U-Net network can perform a reliable and accurate prediction model for determining lactone content in A. paniculata.
穿心莲壁内酯含量分布估计。需要使用高光谱图像和U-Net网络
在VNIR-SWIR范围内(400-2500nm)的高光谱反射率数据通常用于非破坏性和非接触式测量植物的化学成分。传统的方法大多是基于非空间分析,这种方法需要平均光谱数据来代表整个图像,导致空间信息的丢失。为了解决这个问题,我们利用U-Net网络来保存空间信息,同时也允许识别和定量图像中的内酯含量。由此产生的分布图提供了整个田地或作物内酯含量的清晰可视化,使其易于识别高或低内酯水平的区域。预处理方法包括图像配准、异常值去除、光谱平滑和归一化。这些步骤旨在纠正错误,提高图像和遮罩的质量。实验结果表明,U-Net模型的R2、RMSE和DICE分别为0.718、11.66和89.92%。结果表明,利用高光谱图像与U-Net网络相结合,可以建立一个可靠、准确的预测模型来测定金针叶中内酯的含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信