Personalized versus non-personalized tag recommendation: A suitability study on three social networks

Muhammad Moeen Uddin, Malik Tahir Hassan, Asim Karim
{"title":"Personalized versus non-personalized tag recommendation: A suitability study on three social networks","authors":"Muhammad Moeen Uddin, Malik Tahir Hassan, Asim Karim","doi":"10.1109/INMIC.2011.6151510","DOIUrl":null,"url":null,"abstract":"Tag recommendation systems are either personalized or non-personalized. Personalized tag recommendation utilizes a user's tagging behavior from her tagging history for predictions. Whereas non-personalized recommendation systems recommend what is popular and relevant to the user. In this study, we have analyzed the role of personal tagging history in recommending tags. The experiments are done on three folksonomy datasets: Delicious, Flickr and Bibsonomy. Important results for three popular tag recommendation algorithms: PITF, FolkRank and Adapted PageRank are reported in terms of prediction quality. It is found that users' history usage preferences change across all data sets; hence overall prediction quality of personalized recommendation system may suffer. We discover a generic life cycle of folksonomy users on the basis of their history usage. We propose this life cycle can be used to improve an overall prediction performance of a recommendation system across all folksonomies.","PeriodicalId":207616,"journal":{"name":"2011 IEEE 14th International Multitopic Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 14th International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2011.6151510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Tag recommendation systems are either personalized or non-personalized. Personalized tag recommendation utilizes a user's tagging behavior from her tagging history for predictions. Whereas non-personalized recommendation systems recommend what is popular and relevant to the user. In this study, we have analyzed the role of personal tagging history in recommending tags. The experiments are done on three folksonomy datasets: Delicious, Flickr and Bibsonomy. Important results for three popular tag recommendation algorithms: PITF, FolkRank and Adapted PageRank are reported in terms of prediction quality. It is found that users' history usage preferences change across all data sets; hence overall prediction quality of personalized recommendation system may suffer. We discover a generic life cycle of folksonomy users on the basis of their history usage. We propose this life cycle can be used to improve an overall prediction performance of a recommendation system across all folksonomies.
个性化与非个性化标签推荐:三个社交网络的适用性研究
标签推荐系统要么是个性化的,要么是非个性化的。个性化标记推荐利用用户标记历史记录中的标记行为进行预测。而非个性化的推荐系统推荐的是流行的和与用户相关的内容。在本研究中,我们分析了个人标签历史在推荐标签中的作用。实验是在三个民间分类法数据集上完成的:Delicious, Flickr和Bibsonomy。在预测质量方面,报告了三种流行的标签推荐算法:PITF、FolkRank和adaptive PageRank的重要结果。研究发现,用户的历史使用偏好在所有数据集中都发生了变化;因此,个性化推荐系统的整体预测质量可能会受到影响。我们在使用历史的基础上发现了大众分类法用户的通用生命周期。我们提出这个生命周期可以用来提高推荐系统在所有大众分类法中的整体预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信