Data-Driven Modeling of Inverter-Fed Induction Motor Drives using DMDc for Faulty Conditions

Muhammed Ali Gultekin, Zhe Zhang, A. Bazzi
{"title":"Data-Driven Modeling of Inverter-Fed Induction Motor Drives using DMDc for Faulty Conditions","authors":"Muhammed Ali Gultekin, Zhe Zhang, A. Bazzi","doi":"10.1109/IEMDC47953.2021.9449511","DOIUrl":null,"url":null,"abstract":"Modeling faulty behavior of systems has benefits in diagnosis and control. In this paper a data-driven method, dynamic mode decomposition with control (DMDc), is employed for modeling an inverter-fed induction machine. Results are shown and compared for two scenarios: A step input change and an inverter fault. For both cases, the algorithm can correctly predict behavior of the system. The advantage of this model is its independence from the system parameters. The results show promise for data-drivenfault diagnostics and system modeling.","PeriodicalId":106489,"journal":{"name":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"701 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC47953.2021.9449511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Modeling faulty behavior of systems has benefits in diagnosis and control. In this paper a data-driven method, dynamic mode decomposition with control (DMDc), is employed for modeling an inverter-fed induction machine. Results are shown and compared for two scenarios: A step input change and an inverter fault. For both cases, the algorithm can correctly predict behavior of the system. The advantage of this model is its independence from the system parameters. The results show promise for data-drivenfault diagnostics and system modeling.
故障条件下使用DMDc的变频感应电机驱动数据驱动建模
对系统的故障行为进行建模有利于系统的诊断和控制。本文采用数据驱动的动态模态分解控制(DMDc)方法对变频感应电机进行建模。结果显示和比较两种情况:一个阶跃输入变化和逆变器故障。对于这两种情况,该算法都能正确地预测系统的行为。该模型的优点是不受系统参数的影响。结果显示了数据驱动的故障诊断和系统建模的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信