An Lipreading Modle with DenseNet and E3D-LSTM

Chongyuan Bi, Dongping Zhang, Li Yang, Ping Chen
{"title":"An Lipreading Modle with DenseNet and E3D-LSTM","authors":"Chongyuan Bi, Dongping Zhang, Li Yang, Ping Chen","doi":"10.1109/ICSAI48974.2019.9010432","DOIUrl":null,"url":null,"abstract":"For Chinese lip reading, the paper proposes an improved DenseNet network structure to strengthen the ability of short-term dependence of the model. At the backend,E3D-LSTM is adopted to conduct time modeling of features extracted from CNN. The loss function of CTC is used to solve different speech habits of speakers, which will lead to different time dependence of the same word. LRW-1000 datasets are used for training, and experiments show that the Chinese recognition rate is better than the traditional method. In the diffferent length of sequences, our work arrives 38.96%in easy,38.49% in medium and 37.92% in hard, respectively.","PeriodicalId":270809,"journal":{"name":"2019 6th International Conference on Systems and Informatics (ICSAI)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI48974.2019.9010432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For Chinese lip reading, the paper proposes an improved DenseNet network structure to strengthen the ability of short-term dependence of the model. At the backend,E3D-LSTM is adopted to conduct time modeling of features extracted from CNN. The loss function of CTC is used to solve different speech habits of speakers, which will lead to different time dependence of the same word. LRW-1000 datasets are used for training, and experiments show that the Chinese recognition rate is better than the traditional method. In the diffferent length of sequences, our work arrives 38.96%in easy,38.49% in medium and 37.92% in hard, respectively.
基于DenseNet和E3D-LSTM的唇读模型
对于汉语唇读,本文提出了一种改进的DenseNet网络结构,增强了模型的短期依赖能力。后端采用E3D-LSTM对从CNN中提取的特征进行时间建模。利用CTC的损失函数来解决说话人不同的说话习惯会导致同一单词的时间依赖性不同的问题。使用LRW-1000数据集进行训练,实验表明该方法的中文识别率优于传统方法。在不同长度的序列中,我们的工作分别达到38.96%的容易,38.49%的中,37.92%的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信