Eğricik Dönüşümü Ayrıştırması Kullanılarak İki Sınıflı Motor Görüntüsü EEG Sinyallerinin Sınıflandırılması

Nebi Gedi̇k
{"title":"Eğricik Dönüşümü Ayrıştırması Kullanılarak İki Sınıflı Motor Görüntüsü EEG Sinyallerinin Sınıflandırılması","authors":"Nebi Gedi̇k","doi":"10.53448/akuumubd.1183726","DOIUrl":null,"url":null,"abstract":"Beyin bilgisayar arayüzü çalışmaları, temel olarak beyin sinyallerini toplamayı, analiz etmeyi ve kullanılmak üzere komutlara çevirmeyi amaçlamaktadır. Beyin sinyallerinin kontrol komutlarına çevrilmesinde elektroensefalogram (EEG) bir olanak sağlamaktadır. Deneğe özgü ve durağan olmayan yapısı nedeniyle EEG sinyallerinin sınıflandırılması zorlu görevlerdendir ve farklı yaklaşımlarla çalışmalar yapılmaktadır. Bu çalışmaların bir bölümü motor hareket hayali içeren beyin aktivitelerinin analizini kapsamaktadır. Bu makale, eğricik dönüşüm ayrıştırmasını kullanan iki sınıflı bir motor görüntüsü sınıflandırma algoritması sunmaktadır. Önerilen algoritma, BBA yarışması IV veri kümesi IIa kullanılarak gerçekleştirilmiştir. 22 kanaldan oluşturulan veri kümesinden, seçilen üç kanala (C3, Cz ve C4) ait EEG sinyalleri uygulamada kullanılmaktadır ve kanal sinyallerine 9-30 Hz frekans aralığı için eğricik dönüşümü uygulanmaktadır. Elde edilen dönüşüm katsayıları üzerinden standart sapma, ortalama değer ve log-varyans değerleri hesaplanarak özellik vektörleri oluşturulmaktadır. Doğrudan özellik vektörleri üzerinden ve özellik seçimi yapılarak karşılaştırmalı sınıflandırma işlemleri gerçekleştirilmektedir. Özellik seçimi için t-test yöntemi kullanılmakta, sınıflandırma işlemi k-NN sınıflandırıcısı kullanılarak gerçekleştirilmiştir.","PeriodicalId":313113,"journal":{"name":"Afyon Kocatepe Üniversitesi Uluslararası Mühendislik Teknolojileri ve Uygulamalı Bilimler Dergisi","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afyon Kocatepe Üniversitesi Uluslararası Mühendislik Teknolojileri ve Uygulamalı Bilimler Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53448/akuumubd.1183726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Beyin bilgisayar arayüzü çalışmaları, temel olarak beyin sinyallerini toplamayı, analiz etmeyi ve kullanılmak üzere komutlara çevirmeyi amaçlamaktadır. Beyin sinyallerinin kontrol komutlarına çevrilmesinde elektroensefalogram (EEG) bir olanak sağlamaktadır. Deneğe özgü ve durağan olmayan yapısı nedeniyle EEG sinyallerinin sınıflandırılması zorlu görevlerdendir ve farklı yaklaşımlarla çalışmalar yapılmaktadır. Bu çalışmaların bir bölümü motor hareket hayali içeren beyin aktivitelerinin analizini kapsamaktadır. Bu makale, eğricik dönüşüm ayrıştırmasını kullanan iki sınıflı bir motor görüntüsü sınıflandırma algoritması sunmaktadır. Önerilen algoritma, BBA yarışması IV veri kümesi IIa kullanılarak gerçekleştirilmiştir. 22 kanaldan oluşturulan veri kümesinden, seçilen üç kanala (C3, Cz ve C4) ait EEG sinyalleri uygulamada kullanılmaktadır ve kanal sinyallerine 9-30 Hz frekans aralığı için eğricik dönüşümü uygulanmaktadır. Elde edilen dönüşüm katsayıları üzerinden standart sapma, ortalama değer ve log-varyans değerleri hesaplanarak özellik vektörleri oluşturulmaktadır. Doğrudan özellik vektörleri üzerinden ve özellik seçimi yapılarak karşılaştırmalı sınıflandırma işlemleri gerçekleştirilmektedir. Özellik seçimi için t-test yöntemi kullanılmakta, sınıflandırma işlemi k-NN sınıflandırıcısı kullanılarak gerçekleştirilmiştir.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信