FMICW Radar Target Classification By Neural Network

K. Pitaš, L. Rejfek, T. N. Nguyen, L. Beran, Phuong T. Tran, O. Fiser
{"title":"FMICW Radar Target Classification By Neural Network","authors":"K. Pitaš, L. Rejfek, T. N. Nguyen, L. Beran, Phuong T. Tran, O. Fiser","doi":"10.1109/RADIOELEKTRONIKA49387.2020.9092342","DOIUrl":null,"url":null,"abstract":"This document describes automatic classification of targets detected by the FMICW radar. These targets are counted and sorted to three groups (incoming, outgoing and static targets). We derived this information from the output of the neural network which marked the targets in 2D spectrum. The additional neural network has five layers. The first layer is used for the suppression of the targets with even numbers of points, which causes problems during the symmetry detection. The second and third layers detect the symmetry in the dimension (vertical or horizontal). The fourth layer checks out if the symmetry is in both dimensions and if the detection is not a false alert caused by the constellation of the targets. The fifth layer contains only 4 neurons and this layer is used for counting of the targets and classification of the targets (if they are static, incoming or outgoing). The neural network is composed of a simple block for the easy implementation on the FPGA.","PeriodicalId":131117,"journal":{"name":"2020 30th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 30th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEKTRONIKA49387.2020.9092342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This document describes automatic classification of targets detected by the FMICW radar. These targets are counted and sorted to three groups (incoming, outgoing and static targets). We derived this information from the output of the neural network which marked the targets in 2D spectrum. The additional neural network has five layers. The first layer is used for the suppression of the targets with even numbers of points, which causes problems during the symmetry detection. The second and third layers detect the symmetry in the dimension (vertical or horizontal). The fourth layer checks out if the symmetry is in both dimensions and if the detection is not a false alert caused by the constellation of the targets. The fifth layer contains only 4 neurons and this layer is used for counting of the targets and classification of the targets (if they are static, incoming or outgoing). The neural network is composed of a simple block for the easy implementation on the FPGA.
基于神经网络的FMICW雷达目标分类
本文档描述了FMICW雷达探测到的目标自动分类。这些目标被计数并分类为三组(传入目标、传出目标和静态目标)。我们从神经网络的输出中得到这些信息,这些信息在二维光谱中标记目标。附加的神经网络有五层。第一层用于抑制具有偶数点的目标,这在对称检测过程中会造成问题。第二层和第三层检测维度(垂直或水平)的对称性。第四层检查对称是否在两个维度上,以及检测是否不是由目标星座引起的错误警报。第五层仅包含4个神经元,这一层用于目标计数和目标分类(如果它们是静态的、传入的或传出的)。该神经网络由一个简单的模块组成,便于在FPGA上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信