Co-optimizing Latency and Energy for IoT services using HMP servers in Fog Clusters

S. Shukla, D. Ghosal, Kesheng Wu, A. Sim, M. Farrens
{"title":"Co-optimizing Latency and Energy for IoT services using HMP servers in Fog Clusters","authors":"S. Shukla, D. Ghosal, Kesheng Wu, A. Sim, M. Farrens","doi":"10.1109/FMEC.2019.8795353","DOIUrl":null,"url":null,"abstract":"Fog computing has the potential to be an energy-efficient alternative to cloud computing for guaranteeing latency requirements of Latency-critical (LC) IoT services. However, even in fog computing low energy-efficiency of homogeneous multi-core server processors can be a major contributor to energy wastage. Recent studies have shown that Heterogeneous Multi-core Processors (HMPs) can improve energy efficiency of servers by adapting to dynamic load changes of LC-services. However, proposed approaches optimize energy only at a single server level. In our work, we demonstrate that optimization at the cluster-level across many HMP-servers can offer much greater energy savings through optimal work distribution across the HMP-servers while still guaranteeing the Service Level Objectives (SLO) of LC-services. In this paper, we present Greeniac, a cluster-level task manager that employs Reinforcement Learning to identify optimal configurations at the server- and cluster-levels for different workloads. We develop a server-level service scheduler and a cluster-level load balancing module to assign services and distribute tasks across HMP servers based on the learned configurations. In addition to meeting the required SLO targets, Greeniac achieves up to 28% energy saving compared to best-case cluster scheduling techniques with local HMP-aware scheduling on a 4-server fog cluster, with potentially larger savings in a larger cluster.","PeriodicalId":101825,"journal":{"name":"2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMEC.2019.8795353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Fog computing has the potential to be an energy-efficient alternative to cloud computing for guaranteeing latency requirements of Latency-critical (LC) IoT services. However, even in fog computing low energy-efficiency of homogeneous multi-core server processors can be a major contributor to energy wastage. Recent studies have shown that Heterogeneous Multi-core Processors (HMPs) can improve energy efficiency of servers by adapting to dynamic load changes of LC-services. However, proposed approaches optimize energy only at a single server level. In our work, we demonstrate that optimization at the cluster-level across many HMP-servers can offer much greater energy savings through optimal work distribution across the HMP-servers while still guaranteeing the Service Level Objectives (SLO) of LC-services. In this paper, we present Greeniac, a cluster-level task manager that employs Reinforcement Learning to identify optimal configurations at the server- and cluster-levels for different workloads. We develop a server-level service scheduler and a cluster-level load balancing module to assign services and distribute tasks across HMP servers based on the learned configurations. In addition to meeting the required SLO targets, Greeniac achieves up to 28% energy saving compared to best-case cluster scheduling techniques with local HMP-aware scheduling on a 4-server fog cluster, with potentially larger savings in a larger cluster.
在雾集群中使用HMP服务器共同优化物联网服务的延迟和能量
雾计算有可能成为云计算的一种节能替代方案,以保证延迟关键(LC)物联网服务的延迟要求。然而,即使在雾计算中,同构多核服务器处理器的低能效也可能是造成能源浪费的主要原因。近年来的研究表明,异构多核处理器(hmp)能够适应lc服务负载的动态变化,从而提高服务器的能源效率。然而,所提出的方法仅在单个服务器级别上优化能源。在我们的工作中,我们证明了跨许多hmp服务器的集群级优化可以通过跨hmp服务器的最佳工作分配提供更大的能源节约,同时仍然保证lc服务的服务水平目标(SLO)。在本文中,我们介绍了Greeniac,一个集群级任务管理器,它使用强化学习来识别服务器和集群级别针对不同工作负载的最佳配置。我们开发了一个服务器级服务调度器和一个集群级负载平衡模块,以根据学习到的配置在HMP服务器之间分配服务和分发任务。除了满足所需的SLO目标之外,与在4台服务器雾集群上使用本地hmp感知调度的最佳集群调度技术相比,Greeniac实现了高达28%的节能,在更大的集群中可能会节省更多的能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信